scispace - formally typeset
Open AccessJournal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

Reads0
Chats0
TLDR
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings Article

Decoupling Representation and Classifier for Long-Tailed Recognition

TL;DR: It is shown that it is possible to outperform carefully designed losses, sampling strategies, even complex modules with memory, by using a straightforward approach that decouples representation and classification.
Proceedings ArticleDOI

CNN-SLAM: Real-Time Dense Monocular SLAM with Learned Depth Prediction

TL;DR: A method where CNN-predicted dense depth maps are naturally fused together with depth measurements obtained from direct monocular SLAM, based on a scheme that privileges depth prediction in image locations where monocularSLAM approaches tend to fail, e.g. along low-textured regions, and vice-versa.
Proceedings ArticleDOI

Multimodal deep learning for robust RGB-D object recognition

TL;DR: This paper leverages recent progress on Convolutional Neural Networks (CNNs) and proposes a novel RGB-D architecture for object recognition that is composed of two separate CNN processing streams - one for each modality - which are consecutively combined with a late fusion network.
Proceedings ArticleDOI

Unified Deep Supervised Domain Adaptation and Generalization

TL;DR: This work provides a unified framework for addressing the problem of visual supervised domain adaptation and generalization with deep models by reverting to point-wise surrogates of distribution distances and similarities by exploiting the Siamese architecture.
Journal ArticleDOI

A survey of deep learning techniques for autonomous driving

TL;DR: In this article, the authors survey the current state-of-the-art on deep learning technologies used in autonomous driving, including convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Related Papers (5)