scispace - formally typeset
Open AccessJournal ArticleDOI

Imaging human connectomes at the macroscale

Reads0
Chats0
TLDR
This Review provides a survey of magnetic resonance imaging–based measurements of functional and structural connectivity and highlights emerging areas of development and inquiry and the importance of integrating structural and functional perspectives on brain architecture.
Abstract
At macroscopic scales, the human connectome comprises anatomically distinct brain areas, the structural pathways connecting them and their functional interactions. Annotation of phenotypic associations with variation in the connectome and cataloging of neurophenotypes promise to transform our understanding of the human brain. In this Review, we provide a survey of magnetic resonance imaging–based measurements of functional and structural connectivity. We highlight emerging areas of development and inquiry and emphasize the importance of integrating structural and functional perspectives on brain architecture.

read more

Citations
More filters
Journal ArticleDOI

The WU-Minn Human Connectome Project: An Overview

TL;DR: Progress made during the first half of the Human Connectome Project project in refining the methods for data acquisition and analysis provides grounds for optimism that the HCP datasets and associated methods and software will become increasingly valuable resources for characterizing human brain connectivity and function, their relationship to behavior, and their heritability and genetic underpinnings.
Journal ArticleDOI

The challenge of mapping the human connectome based on diffusion tractography

Klaus H. Maier-Hein, +76 more
TL;DR: The encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent) is reported, however, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups.
Journal ArticleDOI

The hubs of the human connectome are generally implicated in the anatomy of brain disorders

TL;DR: Using network analysis of DTI data from healthy volunteers, and meta-analyses of published MRI studies in 26 brain disorders, Crossley et al. show that lesions across disorders tend to be concentrated at hubs.
Journal ArticleDOI

Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity.

TL;DR: A systematic evaluation of 14 participant‐level confound regression methods for functional connectivity highlights the heterogeneous efficacy of existing methods, and suggests that different confounding regression strategies may be appropriate in the context of specific scientific goals.
References
More filters
Journal ArticleDOI

Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain

TL;DR: An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute was performed and it is believed that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain.
Book ChapterDOI

Investigating causal relations by econometric models and cross-spectral methods

TL;DR: In this article, it is shown that the cross spectrum between two variables can be decomposed into two parts, each relating to a single causal arm of a feedback situation, and measures of causal lag and causal strength can then be constructed.
Related Papers (5)