scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Imaging intracellular fluorescent proteins at nanometer resolution.

15 Sep 2006-Science (American Association for the Advancement of Science)-Vol. 313, Iss: 5793, pp 1642-1645
TL;DR: This work introduced a method for optically imaging intracellular proteins at nanometer spatial resolution and used this method to image specific target proteins in thin sections of lysosomes and mitochondria and in fixed whole cells to image retroviral protein Gag at the plasma membrane.
Abstract: We introduce a method for optically imaging intracellular proteins at nanometer spatial resolution. Numerous sparse subsets of photoactivatable fluorescent protein molecules were activated, localized (to approximately 2 to 25 nanometers), and then bleached. The aggregate position information from all subsets was then assembled into a superresolution image. We used this method--termed photoactivated localization microscopy--to image specific target proteins in thin sections of lysosomes and mitochondria; in fixed whole cells, we imaged vinculin at focal adhesions, actin within a lamellipodium, and the distribution of the retroviral protein Gag at the plasma membrane.

Content maybe subject to copyright    Report

Citations
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A new method for fluorescence imaging has been developed that can obtain spatial distributions of large numbers of fluorescent molecules on length scales shorter than the classical diffraction limit, and suggests a means to address a significant number of biological questions that had previously been limited by microscope resolution.

3,437 citations


Cites background from "Imaging intracellular fluorescent p..."

  • ...had recently appeared online in the journal Science (56)....

    [...]

  • ...At the time of publication, a related work by E. Betzig et al. had recently appeared online in the journal Science (56)....

    [...]

  • ...A single one-microliter droplet of diluted PA-GFP solution was deposited on a No. 1.5 glass coverslip (Corning Life Sciences, Corning, NY) and allowed to slowly evaporate....

    [...]

Journal ArticleDOI
25 May 2007-Science
TL;DR: Initial applications indicate that emergent far-field optical nanoscopy will have a strong impact in the life sciences and in other areas benefiting from nanoscale visualization.
Abstract: In 1873, Ernst Abbe discovered what was to become a well-known paradigm: the inability of a lens-based optical microscope to discern details that are closer together than half of the wavelength of light. However, for its most popular imaging mode, fluorescence microscopy, the diffraction barrier is crumbling. Here, I discuss the physical concepts that have pushed fluorescence microscopy to the nanoscale, once the prerogative of electron and scanning probe microscopes. Initial applications indicate that emergent far-field optical nanoscopy will have a strong impact in the life sciences and in other areas benefiting from nanoscale visualization.

2,730 citations

Journal ArticleDOI
08 Feb 2008-Science
TL;DR: 3D stochastic optical reconstruction microscopy (STORM) is demonstrated by using optical astigmatism to determine both axial and lateral positions of individual fluorophores with nanometer accuracy, allowing the 3D morphology of nanoscopic cellular structures to be resolved.
Abstract: Recent advances in far-field fluorescence microscopy have led to substantial improvements in image resolution, achieving a near-molecular resolution of 20 to 30 nanometers in the two lateral dimensions. Three-dimensional (3D) nanoscale-resolution imaging, however, remains a challenge. We demonstrated 3D stochastic optical reconstruction microscopy (STORM) by using optical astigmatism to determine both axial and lateral positions of individual fluorophores with nanometer accuracy. Iterative, stochastic activation of photoswitchable probes enables high-precision 3D localization of each probe, and thus the construction of a 3D image, without scanning the sample. Using this approach, we achieved an image resolution of 20 to 30 nanometers in the lateral dimensions and 50 to 60 nanometers in the axial dimension. This development allowed us to resolve the 3D morphology of nanoscopic cellular structures.

2,589 citations

Journal ArticleDOI
TL;DR: Optical antennas are devices that convert freely propagating optical radiation into localized energy, and vice versa as mentioned in this paper, and hold promise for enhancing the performance and efficiency of photodetection, light emission and sensing.
Abstract: Optical antennas are devices that convert freely propagating optical radiation into localized energy, and vice versa. They enable the control and manipulation of optical fields at the nanometre scale, and hold promise for enhancing the performance and efficiency of photodetection, light emission and sensing. Although many of the properties and parameters of optical antennas are similar to their radiowave and microwave counterparts, they have important differences resulting from their small size and the resonant properties of metal nanostructures. This Review summarizes the physical properties of optical antennas, provides a summary of some of the most important recent developments in the field, discusses the potential applications and identifies the future challenges and opportunities.

2,557 citations

References
More filters
Journal ArticleDOI
TL;DR: A gene encoding a fluorescent protein from the stony coral Lobophyllia hemprichii has been cloned in Escherichia coli and characterized by biochemical and biophysical methods and is found to be tetrameric, with strong Forster resonance coupling among the individual fluorophores.
Abstract: A gene encoding a fluorescent protein from the stony coral Lobophyllia hemprichii has been cloned in Escherichia coli and characterized by biochemical and biophysical methods. The protein, which we named EosFP, emits strong green fluorescence (516 nm) that changes to red (581 nm) upon near-UV irradiation at ≈390 nm because of a photo-induced modification involving a break in the peptide backbone next to the chromophore. Single-molecule fluorescence spectroscopy shows that the wild type of EosFP is tetrameric, with strong Forster resonance coupling among the individual fluorophores. We succeeded in breaking up the tetramer into AB and AC subunit dimers by introducing the single point mutations V123T and T158H, respectively, and the combination of both mutations yielded functional monomers. Fusion constructs with a variety of proteins were prepared and expressed in human cells, showing that normal biological functions were retained. The possibility to locally change the emission wavelength by focused UV light makes EosFP a superb marker for experiments aimed at tracking the movements of biomolecules within the living cell.

672 citations

Journal ArticleDOI
TL;DR: The properties of the available photoactivatable fluorescent proteins and their potential applications are discussed.
Abstract: The fluorescence characteristics of photoactivatable proteins can be controlled by irradiating them with light of a specific wavelength, intensity and duration. This provides unique possibilities for the optical labelling and tracking of living cells, organelles and intracellular molecules in a spatio-temporal manner. Here, we discuss the properties of the available photoactivatable fluorescent proteins and their potential applications.

456 citations

Journal ArticleDOI
H. F. Hess1, Eric Betzig1, Timothy D. Harris1, Loren Pfeiffer1, Ken W. West1 
17 Jun 1994-Science
TL;DR: Near-field microscopy/spectroscopy provides a means to access energies and homogeneous line widths for the individual eigenstates of these centers, and thus opens a rich area of physics involving quantum resolved systems.
Abstract: Luminescent centers with sharp (<0.07 millielectron volt), spectrally distinct emission lines were imaged in a GaAs/AIGaAs quantum well by means of low-temperature near-field scanning optical microscopy. Temperature, magnetic field, and linewidth measurements establish that these centers arise from excitons laterally localized at interface fluctuations. For sufficiently narrow wells, virtually all emission originates from such centers. Near-field microscopy/spectroscopy provides a means to access energies and homogeneous line widths for the individual eigenstates of these centers, and thus opens a rich area of physics involving quantum resolved systems.

433 citations

Journal ArticleDOI
TL;DR: This work circumvented the Rayleigh limit and achieved nanometer-scale resolution by measuring the distance between single fluorophores separated by 10-20 nm via attachment to the ends of double-stranded DNA molecules immobilized on a surface.
Abstract: Conventional light microscopy is limited in its resolving power by the Rayleigh limit to length scales on the order of 200 nm. On the other hand, spectroscopic techniques such as fluorescence resonance energy transfer cannot be used to measure distances >10 nm, leaving a "gap" in the ability of optical techniques to measure distances on the 10- to 100-nm scale. We have previously demonstrated the ability to localize single dye molecules to a precision of 1.5 nm with subsecond time resolution. Here we locate the position of two dyes and determine their separation with 5-nm precision, using the quantal photobleaching behavior of single fluorescent dye molecules. By fitting images both before and after photobleaching of one of the dyes, we may localize both dyes simultaneously and compute their separation. Hence, we have circumvented the Rayleigh limit and achieved nanometer-scale resolution. Specifically, we demonstrate the technique by measuring the distance between single fluorophores separated by 10-20 nm via attachment to the ends of double-stranded DNA molecules immobilized on a surface. In addition to bridging the gap in optical resolution, this technique may be useful for biophysical or genomic applications, including the generation of super-high-density maps of single-nucleotide polymorphisms.

397 citations

Journal ArticleDOI
TL;DR: Estimates of each suggest that near-field fluorescence excitation microscopy/spectroscopy with molecular sensitivity and spatial resolution is possible.
Abstract: We can resolve multiple discrete features within a focal region of m spatial dimensions by first isolating each on the basis of n ≥ 1 unique optical characteristics and then measuring their relative spatial coordinates. The minimum acceptable separation between features depends on the point-spread function in the (m + n)-dimensional space formed by the spatial coordinates and the optical parameters, whereas the absolute spatial resolution is determined by the accuracy to which the coordinates can be measured. Estimates of each suggest that near-field fluorescence excitation microscopy/spectroscopy with molecular sensitivity and spatial resolution is possible.

392 citations