scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Immunity against Staphylococcus aureus cutaneous infections

01 Aug 2011-Nature Reviews Immunology (Nature Publishing Group)-Vol. 11, Iss: 8, pp 505-518
TL;DR: Recent discoveries have identified a key role for interleukin-1 (IL-1)- and IL-17-mediated immune responses in promoting neutrophil recruitment to the site of infection in the skin, a process that is required for host defence and bacterial clearance.
Abstract: Complications arising from cutaneous and soft tissue infections with Staphylococcus aureus are a major clinical problem owing to the high incidence of these infections and the widespread emergence of antibiotic-resistant bacterial strains. If prophylactic vaccines or immunotherapy for certain patient populations are to be developed as an alternative to antibiotics, it will be essential to better understand the immune mechanisms that provide protection against S. aureus skin infections. Recent discoveries have identified a key role for interleukin-1 (IL-1)- and IL-17-mediated immune responses in promoting neutrophil recruitment to the site of infection in the skin, a process that is required for host defence and bacterial clearance. This Review describes these new insights and discusses their potential impact on immune-based therapies and vaccination strategies.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Reintroduction of antimicrobial CoNS strains to human subjects with AD decreased colonization by S. aureus, showing how commensal skin bacteria protect against pathogens and how dysbiosis of the skin microbiome can lead to disease.
Abstract: The microbiome can promote or disrupt human health by influencing both adaptive and innate immune functions. We tested whether bacteria that normally reside on human skin participate in host defense by killing Staphylococcus aureus, a pathogen commonly found in patients with atopic dermatitis (AD) and an important factor that exacerbates this disease. High-throughput screening for antimicrobial activity against S. aureus was performed on isolates of coagulase-negative Staphylococcus (CoNS) collected from the skin of healthy and AD subjects. CoNS strains with antimicrobial activity were common on the normal population but rare on AD subjects. A low frequency of strains with antimicrobial activity correlated with colonization by S. aureus The antimicrobial activity was identified as previously unknown antimicrobial peptides (AMPs) produced by CoNS species including Staphylococcus epidermidis and Staphylococcus hominis These AMPs were strain-specific, highly potent, selectively killed S. aureus, and synergized with the human AMP LL-37. Application of these CoNS strains to mice confirmed their defense function in vivo relative to application of nonactive strains. Strikingly, reintroduction of antimicrobial CoNS strains to human subjects with AD decreased colonization by S. aureus These findings show how commensal skin bacteria protect against pathogens and demonstrate how dysbiosis of the skin microbiome can lead to disease.

683 citations

Journal ArticleDOI
05 Sep 2013-Nature
TL;DR: It is demonstrated that bacteria directly activate nociceptors, and that the immune response mediated through TLR2, MyD88, T cells, B cells, and neutrophils and monocytes is not necessary for Staphylococcus aureus-induced pain in mice.
Abstract: Nociceptor sensory neurons are specialized to detect potentially damaging stimuli, protecting the organism by initiating the sensation of pain and eliciting defensive behaviours. Bacterial infections produce pain by unknown molecular mechanisms, although they are presumed to be secondary to immune activation. Here we demonstrate that bacteria directly activate nociceptors, and that the immune response mediated through TLR2, MyD88, T cells, B cells, and neutrophils and monocytes is not necessary for Staphylococcus aureus-induced pain in mice. Mechanical and thermal hyperalgesia in mice is correlated with live bacterial load rather than tissue swelling or immune activation. Bacteria induce calcium flux and action potentials in nociceptor neurons, in part via bacterial N-formylated peptides and the pore-forming toxin α-haemolysin, through distinct mechanisms. Specific ablation of Nav1.8-lineage neurons, which include nociceptors, abrogated pain during bacterial infection, but concurrently increased local immune infiltration and lymphadenopathy of the draining lymph node. Thus, bacterial pathogens produce pain by directly activating sensory neurons that modulate inflammation, an unsuspected role for the nervous system in host-pathogen interactions.

645 citations

Journal ArticleDOI
TL;DR: In patients with active RA, CD19+CD24hiCD38hi B cells with regulatory function may fail to prevent the development of autoreactive responses and inflammation, leading to autoimmunity.
Abstract: The relevance of regulatory B cells in the maintenance of tolerance in healthy individuals or in patients with immune disorders remains understudied. In healthy individuals, CD19(+)CD24(hi)CD38(hi) B cells suppress CD4(+)CD25(-) T cell proliferation as well as the release of interferon-γ and tumor necrosis factor-α by these cells; this suppression is partially mediated through the production of interleukin-10 (IL-10). We further elucidate the mechanisms of suppression by CD19(+)CD24(hi)CD38(hi) B cells. Healthy CD19(+)CD24(hi)CD38(hi) B cells inhibited naive T cell differentiation into T helper 1 (T(H)1) and T(H)17 cells and converted CD4(+)CD25(-) T cells into regulatory T cells (T(regs)), in part through the production of IL-10. In contrast, CD19(+)CD24(hi)CD38(hi) B cells from patients with rheumatoid arthritis (RA) failed to convert CD4(+)CD25(-) T cells into functionally suppressive T(regs) or to curb T(H)17 development; however, they maintained the capacity to inhibit T(H)1 cell differentiation. Moreover, RA patients with active disease have reduced numbers of CD19(+)CD24(hi)CD38(hi) B cells in peripheral blood compared with either patients with inactive disease or healthy individuals. These results suggest that in patients with active RA, CD19(+)CD24(hi)CD38(hi) B cells with regulatory function may fail to prevent the development of autoreactive responses and inflammation, leading to autoimmunity.

567 citations


Cites background from "Immunity against Staphylococcus aur..."

  • ...These results are important because indiscriminate suppression could compromise the response of the immune system against infectious agents (39)....

    [...]

Journal ArticleDOI
13 Jun 2013-Toxins
TL;DR: The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.
Abstract: Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.

460 citations


Cites background from "Immunity against Staphylococcus aur..."

  • ...The Th17 response has been implicated in both the immunopathogenesis of toxin-mediated inflammatory skin disease and in protection against acute infection [159,166,167]....

    [...]

Journal ArticleDOI
02 Jan 2015-Science
TL;DR: Findings show that the production of an antimicrobial peptide by adipocytes is an important element for protection against S. aureus infection of the skin.
Abstract: Adipocytes have been suggested to be immunologically active, but their role in host defense is unclear. We observed rapid proliferation of preadipocytes and expansion of the dermal fat layer after infection of the skin by Staphylococcus aureus. Impaired adipogenesis resulted in increased infection as seen in Zfp423nur12 mice or in mice given inhibitors of peroxisome proliferator–activated receptor γ. This host defense function was mediated through the production of cathelicidin antimicrobial peptide from adipocytes because cathelicidin expression was decreased by inhibition of adipogenesis, and adipocytes from Camp−/− mice lost the capacity to inhibit bacterial growth. Together, these findings show that the production of an antimicrobial peptide by adipocytes is an important element for protection against S. aureus infection of the skin.

319 citations

References
More filters
Journal ArticleDOI
TL;DR: Recent advances that have been made by research into the role of TLR biology in host defense and disease are described.
Abstract: The discovery of Toll-like receptors (TLRs) as components that recognize conserved structures in pathogens has greatly advanced understanding of how the body senses pathogen invasion, triggers innate immune responses and primes antigen-specific adaptive immunity. Although TLRs are critical for host defense, it has become apparent that loss of negative regulation of TLR signaling, as well as recognition of self molecules by TLRs, are strongly associated with the pathogenesis of inflammatory and autoimmune diseases. Furthermore, it is now clear that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses. Here we describe the recent advances that have been made by research into the role of TLR biology in host defense and disease.

7,494 citations

Journal ArticleDOI
TL;DR: In an elegant series of clinical observations and laboratory studies published in 1880 and 1882, Ogston described staphylococcal disease and its role in sepsis and abscess formation.
Abstract: Micrococcus, which, when limited in its extent and activity, causes acute suppurative inflammation (phlegmon), produces, when more extensive and intense in its action on the human system, the most virulent forms of septicaemia and pyaemia.1 In an elegant series of clinical observations and laboratory studies published in 1880 and 1882, Ogston described staphylococcal disease and its role in sepsis and abscess formation.1,2 More than 100 years later, Staphylococcus aureus remains a versatile and dangerous pathogen in humans. The frequencies of both community-acquired and hospital-acquired staphylococcal infections have increased steadily, with little change in overall mortality. Treatment of these infections . . .

5,550 citations

Journal ArticleDOI
TL;DR: The investigation of the differentiation, effector function, and regulation of Th17 cells has opened up a new framework for understanding T cell differentiation and now appreciate the importance of Th 17 cells in clearing pathogens during host defense reactions and in inducing tissue inflammation in autoimmune disease.
Abstract: CD4+ T cells, upon activation and expansion, develop into different T helper cell subsets with different cytokine profiles and distinct effector functions. Until recently, T cells were divided into Th1 or Th2 cells, depending on the cytokines they produce. A third subset of IL-17-producing effector T helper cells, called Th17 cells, has now been discovered and characterized. Here, we summarize the current information on the differentiation and effector functions of the Th17 lineage. Th17 cells produce IL-17, IL-17F, and IL-22, thereby inducing a massive tissue reaction owing to the broad distribution of the IL-17 and IL-22 receptors. Th17 cells also secrete IL-21 to communicate with the cells of the immune system. The differentiation factors (TGF-β plus IL-6 or IL-21), the growth and stabilization factor (IL-23), and the transcription factors (STAT3, RORγt, and RORα) involved in the development of Th17 cells have just been identified. The participation of TGF-β in the differentiation of Th17 cells places ...

4,548 citations

Journal ArticleDOI
TL;DR: This Review focuses on new aspects of one of the central paradigms of inflammation and immunity — the leukocyte adhesion cascade.
Abstract: To get to the site of inflammation, leukocytes must first adhere to and traverse the blood-vessel wall, events that occur in a cascade-like manner. But what are the exact steps in this cascade and what molecules are involved?

3,917 citations

Journal ArticleDOI
17 Oct 2007-JAMA
TL;DR: Invasive MRSA infection affects certain populations disproportionately and is a major public health problem primarily related to health care but no longer confined to intensive care units, acute care hospitals, or any health care institution.
Abstract: ContextAs the epidemiology of infections with methicillin-resistant Staphylococcus aureus (MRSA) changes, accurate information on the scope and magnitude of MRSA infections in the US population is needed.ObjectivesTo describe the incidence and distribution of invasive MRSA disease in 9 US communities and to estimate the burden of invasive MRSA infections in the United States in 2005.Design and SettingActive, population-based surveillance for invasive MRSA in 9 sites participating in the Active Bacterial Core surveillance (ABCs)/Emerging Infections Program Network from July 2004 through December 2005. Reports of MRSA were investigated and classified as either health care–associated (either hospital-onset or community-onset) or community-associated (patients without established health care risk factors for MRSA).Main Outcome MeasuresIncidence rates and estimated number of invasive MRSA infections and in-hospital deaths among patients with MRSA in the United States in 2005; interval estimates of incidence excluding 1 site that appeared to be an outlier with the highest incidence; molecular characterization of infecting strains.ResultsThere were 8987 observed cases of invasive MRSA reported during the surveillance period. Most MRSA infections were health care–associated: 5250 (58.4%) were community-onset infections, 2389 (26.6%) were hospital-onset infections; 1234 (13.7%) were community-associated infections, and 114 (1.3%) could not be classified. In 2005, the standardized incidence rate of invasive MRSA was 31.8 per 100 000 (interval estimate, 24.4-35.2). Incidence rates were highest among persons 65 years and older (127.7 per 100 000; interval estimate, 92.6-156.9), blacks (66.5 per 100 000; interval estimate, 43.5-63.1), and males (37.5 per 100 000; interval estimate, 26.8-39.5). There were 1598 in-hospital deaths among patients with MRSA infection during the surveillance period. In 2005, the standardized mortality rate was 6.3 per 100 000 (interval estimate, 3.3-7.5). Molecular testing identified strains historically associated with community-associated disease outbreaks recovered from cultures in both hospital-onset and community-onset health care–associated infections in all surveillance areas.ConclusionsInvasive MRSA infection affects certain populations disproportionately. It is a major public health problem primarily related to health care but no longer confined to intensive care units, acute care hospitals, or any health care institution.

3,803 citations

Trending Questions (1)
How does the host immune responses overcome the virulence factors of bacterial skin infections??

The paper does not provide information on how host immune responses specifically overcome the virulence factors of bacterial skin infections. The paper focuses on the role of interleukin-1 (IL-1) and IL-17-mediated immune responses in promoting neutrophil recruitment and bacterial clearance in S. aureus skin infections.