scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Immunogenicity of clinically relevant SARS-CoV-2 vaccines in nonhuman primates and humans.

19 Feb 2021-Science Advances (American Association for the Advancement of Science)-Vol. 7, Iss: 12
TL;DR: A summary of the antibody and T cell immunogenicity of these vaccines in nonhuman primates and humans can be found in this article, where the authors compare how the vaccines have performed, taking into account the use of different assays to assess immunogenivity and inconsistencies in how the resulting data are presented.
Abstract: Multiple preventive vaccines are being developed to counter the coronavirus disease 2019 pandemic. The leading candidates have now been evaluated in nonhuman primates (NHPs) and human phase 1 and/or phase 2 clinical trials. Several vaccines have already advanced into phase 3 efficacy trials, while others will do so before the end of 2020. Here, we summarize what is known of the antibody and T cell immunogenicity of these vaccines in NHPs and humans. To the extent possible, we compare how the vaccines have performed, taking into account the use of different assays to assess immunogenicity and inconsistencies in how the resulting data are presented. We also review the outcome of challenge experiments with severe acute respiratory syndrome coronavirus 2 in immunized macaques, while noting variations in the protocols used, including but not limited to the virus challenge doses. Press releases on the outcomes of vaccine efficacy trials are also summarized.
Citations
More filters
Journal ArticleDOI
18 Feb 2021-Cell
TL;DR: In this article, a picture has begun to emerge that reveals that CD4+ T cells, CD8+ Tcells, and neutralizing antibodies all contribute to control SARS-CoV-2 in both non-hospitalized and hospitalized cases of COVID-19.

1,092 citations

Journal ArticleDOI
17 Sep 2021-Science
TL;DR: In this paper, nonhuman primates (NHPs) received either no vaccine or doses ranging from 0.3 to 100 μg of the mRNA-12 protein, which can be used as surrogate endpoints for vaccine efficacy.
Abstract: Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. Here, nonhuman primates (NHPs) received either no vaccine or doses ranging from 0.3 to 100 μg of the mRNA-12...

181 citations

Journal ArticleDOI
04 Mar 2021-Cell
TL;DR: In this paper, a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein was proposed to curtail the severe acute respiratory syndrome coronavirus 2 pandemic.

112 citations

Journal ArticleDOI
TL;DR: In 2018, the first case of the coronavirus was infected by COVID-19 in China as mentioned in this paper , and since then, the world witnessed three waves of the corona virus, and more upcoming is expected, whereas several challenges are presented.

94 citations

Journal ArticleDOI
07 Jun 2021
TL;DR: In this article, the authors describe the outcome of a cross-sectional study on a healthcare worker cohort (WELCOME-NYPH), in which they assessed whether IgM, IgG, and IgA antibodies to the S-protein and its receptor-binding domain (RBD) were present in serum and saliva samples.
Abstract: The approved Pfizer and Moderna mRNA vaccines are well known to induce serum antibody responses to the SARS-CoV-2 Spike (S)-protein. However, their abilities to elicit mucosal immune responses have not been reported. Saliva antibodies represent mucosal responses that may be relevant to how mRNA vaccines prevent oral and nasal SARS-CoV-2 transmission. Here, we describe the outcome of a cross-sectional study on a healthcare worker cohort (WELCOME-NYPH), in which we assessed whether IgM, IgG, and IgA antibodies to the S-protein and its receptor-binding domain (RBD) were present in serum and saliva samples. Anti-S-protein IgG was detected in 14/31 and 66/66 of saliva samples from uninfected participants after vaccine doses-1 and -2, respectively. IgA antibodies to the S-protein were present in 40/66 saliva samples after dose 2. Anti-S-protein IgG was present in every serum sample from recipients of 2 vaccine doses. Vaccine-induced antibodies against the RBD were also frequently present in saliva and sera. These findings may help our understanding of whether and how vaccines may impede SARS-CoV-2 transmission, including to oral cavity target cells.

91 citations

References
More filters
Journal ArticleDOI
TL;DR: A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older and safety over a median of 2 months was similar to that of other viral vaccines.
Abstract: Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a world...

10,274 citations

Journal ArticleDOI
01 Apr 2020-Nature
TL;DR: Detailed virological analysis of nine cases of coronavirus disease 2019 (COVID-19) provides proof of active replication of the SARS-CoV-2 virus in tissues of the upper respiratory tract.
Abstract: Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity—but also aided in the control—of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6–8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples—in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19. Detailed virological analysis of nine cases of coronavirus disease 2019 (COVID-19) provides proof of active replication of the SARS-CoV-2 virus in tissues of the upper respiratory tract.

5,840 citations

Journal ArticleDOI
TL;DR: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials.

3,741 citations

Journal ArticleDOI
TL;DR: The mRNA-1273 vaccine induced anti-SARS-CoV-2 immune responses in all participants, and no trial-limiting safety concerns were identified, which support further development of this vaccine.
Abstract: Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and spread globally, prompting an international effort to accelerate development of a vacci...

2,556 citations

Related Papers (5)