scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Immunosuppression as a Hallmark of Critical COVID-19: Prospective Study.

TL;DR: In this paper, the authors performed a comprehensive analysis of peripheral blood lymphocyte subpopulations in 82 patients with COVID-19, including 31 patients with a critical course of the disease.
Abstract: The dysregulation of both the innate and adaptive responses to SARS-CoV-2 have an impact on the course of COVID-19, and play a role in the clinical outcome of the disease. Here, we performed a comprehensive analysis of peripheral blood lymphocyte subpopulations in 82 patients with COVID-19, including 31 patients with a critical course of the disease. In COVID-19 patients who required hospitalization we analyzed T cell subsets, including Treg cells, as well as TCRα/β and γ/δ, NK cells, and B cells, during the first two weeks after admission to hospital due to the SARS-CoV-2 infection, with marked reductions in leukocytes subpopulations, especially in critically ill COVID-19 patients. We showed decreased levels of Th, Ts cells, Treg cells (both naive and induced), TCRα/β and γ/δ cells, as well as CD16+CD56+NK cells in ICU compared to non-ICU COVID-19 patients. We observed impaired function of T and NK cells in critically ill COVID-19 patients with extremely low levels of secreted cytokines. We found that the IL-2/INFγ ratio was the strongest indicator of a critical course of COVID-19, and was associated with fatal outcomes. Our findings showed markedly impaired innate and adaptive responses in critically ill COVID-19 patients, and suggest that the immunosuppressive state in the case of a critical course of SARS-CoV-2 infection might reflect subsequent clinical deterioration and predict a fatal outcome.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: It is found that in the severe and non-survivor groups, European patients had elevated levels of IL-6 compared with Asian patients, which implies that the increased mortality and severity in males was partly due to the higher level of these cytokines.
Abstract: Background: Coronavirus disease 2019 (COVID-2019), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide epidemic and claimed millions of lives. Accumulating evidence suggests that cytokines storms are closely associated to COVID-19 severity and death. Here, we aimed to explore the key factors related to COVID-19 severity and death, especially in terms of the male patients and those in western countries. Methods: To clarify whether inflammatory cytokines have role in COVID-19 severity and death, we systematically searched PubMed, Embase, Cochrane library and Web of Science to identify related studies with the keywords “COVID-19″ and “cytokines”. The data were measured as the mean with 95% confidence interval (CI) by Review Manager 5.3 software. The risk of bias was assessed for each study using appropriate checklists. Results: We preliminarily screened 13,468 studies from the databases. A total of 77 articles with 13,468 patients were ultimately included in our study. The serum levels of cytokines such as interleukin-6 (IL-6), IL-10, interleukin-2 receptor (IL-2R), tumor necrosis factor (TNF)-α, IL-1β, IL-4, IL-8 and IL-17 were higher in the severity or death group. Notably, we also found that the circulating levels of IL-6, IL-10, IL-2R and TNF-α were significantly different between males and females. The serum levels of IL-6, IL-10, IL-2R and TNF-α were much higher in males than in females, which implies that the increased mortality and severity in males was partly due to the higher level of these cytokines. Moreover, we found that in the severe and non-survivor groups, European patients had elevated levels of IL-6 compared with Asian patients. Conclusion: These large-scale data demonstrated that the circulating levels of IL-6, IL-10, IL-2R, IL-1β, IL-4, IL-8 and IL-17 are potential risk factors for severity and high mortality in COVID-19. Simultaneously, the upregulation of these cytokines may be driving factors for the sex and region predisposition.

18 citations

Journal ArticleDOI
20 Sep 2021-Viruses
TL;DR: In this paper, the current state of science on COVID-19 immunology in relation to solid organ transplantation with prospective therapeutic and vaccination strategies in this population is presented and compared to the previous studies.
Abstract: Since its outbreak in December 2019, the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), led to an enormous rise in scientific response with an excess of COVID-19-related studies on the pathogenesis and potential therapeutic approaches. Solid organ transplant (SOT) recipients are a heterogeneous population with long-lasting immunosuppression as a joining element. Immunocompromised patients are a vulnerable population with a high risk of severe infections and an increased infection-related mortality rate. It was postulated that the hyperinflammatory state due to cytokine release syndrome during severe COVID-19 could be alleviated by immunosuppressive therapy in SOT patients. On the other hand, it was previously established that T cell-mediated immunity, which is significantly weakened in SOT recipients, is the main component of antiviral immune responses. In this paper, we present the current state of science on COVID-19 immunology in relation to solid organ transplantation with prospective therapeutic and vaccination strategies in this population.

14 citations

Journal ArticleDOI
03 Nov 2021-Viruses
TL;DR: In this article, a single-cell transcriptomic (scRNAseq) level characterization of human T lymphocyte differentiation at the single cell level in tumors and patients with coronavirus disease 2019 (COVID-19) requires both a reference differentiation trajectory of T cells and a robust mapping method for additional γδ T lymphocytes.
Abstract: The detailed characterization of human γδ T lymphocyte differentiation at the single-cell transcriptomic (scRNAseq) level in tumors and patients with coronavirus disease 2019 (COVID-19) requires both a reference differentiation trajectory of γδ T cells and a robust mapping method for additional γδ T lymphocytes. Here, we incepted such a method to characterize thousands of γδ T lymphocytes from (n = 95) patients with cancer or adult and pediatric COVID-19 disease. We found that cancer patients with human papillomavirus-positive head and neck squamous cell carcinoma and Epstein-Barr virus-positive Hodgkin's lymphoma have γδ tumor-infiltrating T lymphocytes that are more prone to recirculate from the tumor and avoid exhaustion. In COVID-19, both TCRVγ9 and TCRVγnon9 subsets of γδ T lymphocytes relocalize from peripheral blood mononuclear cells (PBMC) to the infected lung tissue, where their advanced differentiation, tissue residency, and exhaustion reflect T cell activation. Although severe COVID-19 disease increases both recruitment and exhaustion of γδ T lymphocytes in infected lung lesions but not blood, the anti-IL6R therapy with Tocilizumab promotes γδ T lymphocyte differentiation in patients with COVID-19. PBMC from pediatric patients with acute COVID-19 disease display similar γδ T cell lymphopenia to that seen in adult patients. However, blood γδ T cells from children with the COVID-19-related multisystem inflammatory syndrome are not lymphodepleted, but they are differentiated as in healthy PBMC. These findings suggest that some virus-induced memory γδ T lymphocytes durably persist in the blood of adults and could subsequently infiltrate and recirculate in tumors.

12 citations

Journal ArticleDOI
26 Sep 2021
TL;DR: Wang et al. as discussed by the authors evaluated the immunological response and the clinical subset of peripheral lymphocyte subset alteration in COVID-19 infection and found that lymphocyte sub-set alteration was associated with the clinical characteristics and progression of COVID19.
Abstract: Background: A novel coronavirus (SARS-CoV-2)-induced pneumonia (COVID-19) emerged in December 2019 in China, spreading worldwide. The aim of the present investigation was to evaluate the immunological response and the clinical subset of peripheral lymphocyte subset alteration in COVID-19 infection. Methods: the study was conducted on four different clinical groups (n = 4; total n = 138). Each individual was assigned to different groups based on specific criteria evaluated at the admission such as fever, dyspnea, arterial blood gas analysis (ABG), oral-nasopharyngeal swab/RT-PCR, and thoracic CT-scan. Treatment was performed only after blood samples were collected from each patient (PP and PP) at day 1. The blood samples were analyzed and tested the same day (CBC and Flowcytometry). The positive–positive group (PP n = 45; F = 18/ M = 27; median age = 62.33), comprised individuals affected by COVID-19 who showed fever, dyspnea (ABG = pO2 < 60), confirmed positive by oral-nasopharyngeal swab/RT-PCR and with CT-scan showing ground-glass opacities. The negative–positive (NP; n = 37; F = 11/M = 26; median age = 75.94) or “COVID-like” group comprised individuals with fever and dyspnea (ABG = pO2 < 60), who tested negative to nasopharyngeal swab/RT-PCR, with CT-scans showing ground-glass opacities in the lungs. The negative–affected group (NA; n = 40; F = 14/M = 26; median age = 58.5) included individuals negative to COVID-19 (RT-PCR) but affected by different chronic respiratory diseases (the CT-scans didn’t show ground-glass opacities). Finally, the negative–negative group (NN; n = 16; F = 14/M = 2) included healthy patients (NN; n = 16; median age = 42.62). Data and findings were collected and compared. Results: Lymphocytes (%) cells showed a decline in COVID-19 patients. The subsets showed a significant association with the inflammatory status in COVID-19, especially with regard to increased neutrophils, T-killer, T-active, T-suppressor, and T-CD8+CD38+ in individuals belong to the either COVID-19 and Covid-like NP group. Conclusions: Peripheral lymphocyte subset alteration was associated with the clinical characteristics and progression of COVID-19. The level of sub-set cells T-lymphocytes (either high or low) and B-lymphocytes could be used as an independent predictor for COVID-19 severity and treatment efficacy.

12 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper explored the role of lymphocyte subsets and cytokines on hospital admission in predicting the severity of coronavirus disease (COVID-19) using logistic regression.
Abstract: Abnormalities of lymphocyte subsets and cytokine profiles have been observed in most patients with coronavirus disease (COVID-19). Here, we explore the role of lymphocyte subsets and cytokines on hospital admission in predicting the severity of COVID-19.This study included 214 patients with COVID-19 who were treated at Chongqing University Three Gorges Hospital from January 19, 2020 to April 30, 2020. Any mutants were not detected in the studied patients. Patients were divided into non-intensive care unit (ICU) (mild/moderate) group and ICU (severe/critical) group, according to the severity of the disease. Clinical and laboratory data, including peripheral lymphocyte subsets and cytokines, were analyzed and compared. Logistic regression was used to analyze the predictive factors for ICU admission. Receiver operating characteristic (ROC) curves were drawn to evaluate the predictive value of selected indicators for the severity of COVID-19.Of the 214 patients enrolled, 161 were non-ICU patients and 53 were ICU patients. Lymphopenia was observed in nearly all of ICU patients (96.2%) and 84.5% of non-ICU patients on hospital admission. The absolute number of lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and natural killer (NK) cells were lower in ICU group (659.00 × 106/L, 417.00 × 106/L, 261.00 × 106/L, 140.00 × 106/L, 109.00 × 106/L, 102.00 × 106/L, respectively) than in non-ICU group (1063.00 × 109/L, 717.00 × 106/L, 432.00 × 106/L, 271.00 × 106/L, 133.00 × 106/L, 143.00 × 106/L, respectively). Interleukin (IL)-6 was significantly higher in ICU patients than in non-ICU patients (18.08 pg/mL vs. 3.13 pg/mL, P < 0.001). Multivariate logistic regression analysis showed that age (odds ratio: 1.067 [1.034-1.101]), diabetes mellitus (odds ratio: 9.154 [2.710-30.926]), CD3+ T cells (odds ratio: 0.996 [0.994-0.997]), and IL-6 (odds ratio: 1.006 [1.000-1.013]) were independent predictors for the development of severe disease. ROC curve analysis showed that the area under the ROC curve (AUC) of CD3+ T cells and IL-6 was 0.806 (0.737-0.874) and 0.785 (0.705-0.864), respectively, and the cutoff values were 510.50 × 106/L (sensitivity, 71.7%; specificity, 79.5%) and 6.58 pg/mL (77.4%, 74.5%), respectively. There were no statistical differences among all tested indicators of lymphocyte subsets and cytokines between severe group (n = 38) and critical group (n = 15) on hospital admission or ICU admission, respectively.The levels of lymphocyte subsets decreased and the level of IL-6 increased significantly in ICU COVID-19 patients compared with non-ICU COVID-19 patients. Therefore, the number of CD3+ T cells and the level of IL-6 on hospital admission may serve as predictive factors for identifying patients with wild-type virus infection who will have severe disease.

10 citations

References
More filters
Journal ArticleDOI
TL;DR: O surto do novo coronavírus (COVID-19) em Wuhan, China, iniciado em dezembro de 2019, evoluiu para se tornar uma pandemia global A.

6,850 citations

Journal ArticleDOI
TL;DR: Investigation of NLR and lymphocyte subsets is helpful in the early screening of critical illness, diagnosis and treatment of COVID-19 and shows the novel coronavirus might mainly act on lymphocytes, especially T lymphocytes.
Abstract: BACKGROUND: In December 2019, coronavirus 2019 (COVID-19) emerged in Wuhan and rapidly spread throughout China. METHODS: Demographic and clinical data of all confirmed cases with COVID-19 on admission at Tongji Hospital from 10 January to 12 February 2020 were collected and analyzed. The data on laboratory examinations, including peripheral lymphocyte subsets, were analyzed and compared between patients with severe and nonsevere infection. RESULTS: Of the 452 patients with COVID-19 recruited, 286 were diagnosed as having severe infection. The median age was 58 years and 235 were male. The most common symptoms were fever, shortness of breath, expectoration, fatigue, dry cough, and myalgia. Severe cases tend to have lower lymphocyte counts, higher leukocyte counts and neutrophil-lymphocyte ratio (NLR), as well as lower percentages of monocytes, eosinophils, and basophils. Most severe cases demonstrated elevated levels of infection-related biomarkers and inflammatory cytokines. The number of T cells significantly decreased, and were more impaired in severe cases. Both helper T (Th) cells and suppressor T cells in patients with COVID-19 were below normal levels, with lower levels of Th cells in the severe group. The percentage of naive Th cells increased and memory Th cells decreased in severe cases. Patients with COVID-19 also have lower levels of regulatory T cells, which are more obviously decreased in severe cases. CONCLUSIONS: The novel coronavirus might mainly act on lymphocytes, especially T lymphocytes. Surveillance of NLR and lymphocyte subsets is helpful in the early screening of critical illness, diagnosis, and treatment of COVID-19.

3,532 citations

Journal ArticleDOI
TL;DR: The SARS-CoV-2 infection may affect primarily T lymphocytes particularly CD4+T and CD8+ T cells, resulting in decrease in numbers as well as IFN-γ production, which may be of importance due to their correlation with disease severity in COVID-19.
Abstract: BACKGROUNDSince December 2019, an outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, and is now becoming a global threat. We aimed to delineate and compare the immunological features of severe and moderate COVID-19.METHODSIn this retrospective study, the clinical and immunological characteristics of 21 patients (17 male and 4 female) with COVID-19 were analyzed. These patients were classified as severe (11 cases) and moderate (10 cases) according to the guidelines released by the National Health Commission of China.RESULTSThe median age of severe and moderate cases was 61.0 and 52.0 years, respectively. Common clinical manifestations included fever, cough, and fatigue. Compared with moderate cases, severe cases more frequently had dyspnea, lymphopenia, and hypoalbuminemia, with higher levels of alanine aminotransferase, lactate dehydrogenase, C-reactive protein, ferritin, and D-dimer as well as markedly higher levels of IL-2R, IL-6, IL-10, and TNF-α. Absolute numbers of T lymphocytes, CD4+ T cells, and CD8+ T cells decreased in nearly all the patients, and were markedly lower in severe cases (294.0, 177.5, and 89.0 × 106/L, respectively) than moderate cases (640.5, 381.5, and 254.0 × 106/L, respectively). The expression of IFN-γ by CD4+ T cells tended to be lower in severe cases (14.1%) than in moderate cases (22.8%).CONCLUSIONThe SARS-CoV-2 infection may affect primarily T lymphocytes, particularly CD4+ and CD8+ T cells, resulting in a decrease in numbers as well as IFN-γ production by CD4+ T cells. These potential immunological markers may be of importance because of their correlation with disease severity in COVID-19.TRIAL REGISTRATIONThis is a retrospective observational study without a trial registration number.FUNDINGThis work is funded by grants from Tongji Hospital for the Pilot Scheme Project, and partly supported by the Chinese National Thirteenth Five Years Project in Science and Technology for Infectious Disease (2017ZX10202201).

3,488 citations

Journal ArticleDOI
TL;DR: Advances in the molecular delineation of T cell exhaustion are clarifying the underlying causes of this state of differentiation and also suggest promising therapeutic opportunities.
Abstract: T cell exhaustion is a state of T cell dysfunction that arises during many chronic infections and cancer. It is defined by poor effector function, sustained expression of inhibitory receptors and a transcriptional state distinct from that of functional effector or memory T cells. Exhaustion prevents optimal control of infection and tumors. Recently, a clearer picture of the functional and phenotypic profile of exhausted T cells has emerged and T cell exhaustion has been defined in many experimental and clinical settings. Although the pathways involved remain to be fully defined, advances in the molecular delineation of T cell exhaustion are clarifying the underlying causes of this state of differentiation and also suggest promising therapeutic opportunities.

3,096 citations

Journal ArticleDOI
TL;DR: Much of the cellular response to IFN-gamma can be described in terms of a set of integrated molecular programs underlying well-defined physiological systems, for example the induction of efficient antigen processing for MHC-mediated antigen presentation, which play clearly defined roles in pathogen resistance.
Abstract: Interferons are cytokines that play a complex and central role in the resistance of mammalian hosts to pathogens. Type I interferon (IFN-alpha and IFN-beta) is secreted by virus-infected cells. Immune, type II, or gamma-interferon (IFN-gamma) is secreted by thymus-derived (T) cells under certain conditions of activation and by natural killer (NK) cells. Although originally defined as an agent with direct antiviral activity, the properties of IFN-gamma include regulation of several aspects of the immune response, stimulation of bactericidal activity of phagocytes, stimulation of antigen presentation through class I and class II major histocompatibility complex (MHC) molecules, orchestration of leukocyte-endothelium interactions, effects on cell proliferation and apoptosis, as well as the stimulation and repression of a variety of genes whose functional significance remains obscure. The implementation of such a variety of effects by a single cytokine is achieved by complex patterns of cell-specific gene regulation: Several IFN-gamma-regulated genes are themselves components of transcription factors. The IFN-gamma response is itself regulated by interaction with responses to other cytokines including IFN-alpha/beta, TNF-alpha, and IL-4. Over 200 genes are now known to be regulated by IFN-gamma and they are listed in a World Wide Web document that accompanies this review. However, much of the cellular response to IFN-gamma can be described in terms of a set of integrated molecular programs underlying well-defined physiological systems, for example the induction of efficient antigen processing for MHC-mediated antigen presentation, which play clearly defined roles in pathogen resistance. A promising approach to the complexity of the IFN-gamma response is to extend the analysis of the less understood IFN-gamma-regulated genes in terms of molecular programs functional in pathogen resistance.

2,956 citations

Related Papers (5)