scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Impaired Kynurenine Pathway Metabolism in The Prefrontal Cortex of Individuals With Schizophrenia

TL;DR: The present results further support the hypothesis that the normalization of cortical KP metabolism may constitute an effective new treatment strategy in SZ.
Abstract: The levels of kynurenic acid (KYNA), an astrocyte-derived metabolite of the branched kynurenine pathway (KP) of tryptophan degradation and antagonist of α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors, are elevated in the prefrontal cortex (PFC) of individuals with schizophrenia (SZ). Because endogenous KYNA modulates extracellular glutamate and acetylcholine levels in the PFC, these increases may be pathophysiologically significant. Using brain tissue from SZ patients and matched controls, we now measured the activity of several KP enzymes (kynurenine 3-monooxygenase [KMO], kynureninase, 3-hydroxyanthranilic acid dioxygenase [3-HAO], quinolinic acid phosphoribosyltransferase [QPRT], and kynurenine aminotransferase II [KAT II]) in the PFC, ie, Brodmann areas (BA) 9 and 10. Compared with controls, the activities of KMO (in BA 9 and 10) and 3-HAO (in BA 9) were significantly reduced in SZ, though there were no significant differences between patients and controls in kynureninase, QPRT, and KAT II. In the same samples, we also confirmed the increase in the tissue levels of KYNA in SZ. As examined in rats treated chronically with the antipsychotic drug risperidone, the observed biochemical changes were not secondary to medication. A persistent reduction in KMO activity may have a particular bearing on pathology because it may signify a shift of KP metabolism toward enhanced KYNA synthesis. The present results further support the hypothesis that the normalization of cortical KP metabolism may constitute an effective new treatment strategy in SZ.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Initial evidence is provided implicating abnormal tryptophan/kynurenine pathway activity in changes to white matter integrity and white matter glutamate in schizophrenia.

58 citations


Cites background from "Impaired Kynurenine Pathway Metabol..."

  • ...…pathway in schizophrenia includes findings of increased concentration of kynurenine and kynurenic acid in brain tissue (Schwarcz et al, 2001; Miller et al, 2006; Sathyasaikumar et al, 2011) and in cerebrospinal fluid of schizophrenia patients (Nilsson et al, 2005; Linderholm et al, 2012)....

    [...]

Journal ArticleDOI
TL;DR: In conclusion, innate immune system activation correlated with PANSS-P, supporting the immune hypothesis of psychosis and suggesting neutrophil and monocyte counts and CRP levels may be useful markers of disease acuity, severity, and treatment response.
Abstract: Innate immunity has been linked to initiation of Alzheimer's disease and multiple sclerosis. Moreover, risk of first-episode psychosis (FEP) and schizophrenia (Sz) is increased after various infections in predisposed individuals. Thus, we hypothesized an analogous role of innate immunity with increased C-reactive protein (CRP) in non-affective psychosis. Differential blood count, CRP, neutrophil and monocyte-macrophage activation markers, cortisol and psychotic symptoms (Positive and Negative Syndrome Scale [PANSS]) were assessed in controls (n = 294) and acutely ill unmedicated FEP (n = 129) and Sz (n = 124) patients at baseline and after 6 weeks treatment. Neutrophils, monocytes, and CRP were increased in patients vs controls at baseline (P < .001), and neutrophil and monocyte counts correlated positively with activation markers. Eosinophils were lower at baseline in FEP (P < .001) and Sz (P = .021) vs controls. Differences in neutrophils (P = .023), eosinophils (P < .001), and CRP (P < .001) were also present when controlling for smoking and cortisol, and partially remitted after antipsychotic treatment. FEP patients with high neutrophils (P = .048) or monocytes (P = .021) had higher PANSS-P scores at baseline but similar disease course. CRP correlated with PANSS-P at baseline (ρ = 0.204, P = .012). Improvement of positive symptoms after treatment correlated with declining neutrophils (ρ = 0.186, P = .015) or CRP (ρ = 0.237, P = .002) and rising eosinophils (ρ = -0.161, P = .036). In FEP, normalization of neutrophils (ρ = -0.231, P = .029) and eosinophils (ρ = 0.209, P = .048) correlated with drug dosage. In conclusion, innate immune system activation correlated with PANSS-P, supporting the immune hypothesis of psychosis. Neutrophil and monocyte counts and CRP levels may be useful markers of disease acuity, severity, and treatment response.

58 citations

Journal ArticleDOI
TL;DR: A role for endogenous KYNA is demonstrated in the bi-directional control of GABAergic neurotransmission in the PFC, and pharmacological manipulation of KYNA may be useful in the treatment ofGABAergic impairments in SZ and other brain disorders involving the P FC.

56 citations

Journal ArticleDOI
TL;DR: Clinical disease activity and differences in disease courses are reflected by changes in KP metabolites, and increased QUIN levels of RRMS patients in relapse and generally decreased levels of TRP in SPMS may relate to neurotoxicity and failure of remyelination, respectively.
Abstract: Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system, with a high rate of neurocognitive symptoms for which the molecular background is still uncertain. There is accumulating evidence for dysregulation of the kynurenine pathway (KP) in different psychiatric and neurodegenerative conditions. We here report the first comprehensive analysis of cerebrospinal fluid (CSF) kynurenine metabolites in MS patients of different disease stages and in relation to neurocognitive symptoms. Levels of tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QUIN) were determined with liquid chromatography mass spectrometry in cell-free CSF. At the group level MS patients (cohort 1; n = 71) did not differ in absolute levels of TRP, KYN, KYNA or QUIN as compared to non-inflammatory neurological disease controls (n = 20). Stratification of patients into different disease courses revealed that both absolute QUIN levels and the QUIN/KYN ratio were increased in relapsing-remitting MS (RRMS) patients in relapse. Interestingly, secondary progressive MS (SPMS) displayed a trend for lower TRP and KYNA, while primary progressive (PPMS) patients displayed increased levels of all metabolites, similar to a group of inflammatory neurological disease controls (n = 13). In the second cohort (n = 48), MS patients with active disease and short disease duration were prospectively evaluated for neuropsychiatric symptoms. In a supervised multivariate analysis using orthogonal projection to latent structures (OPLS-DA) depressed patients displayed higher KYNA/TRP and KYN/TRP ratios, mainly due to low TRP levels. Still, this model had low predictive value and could not completely separate the clinically depressed patients from the non-depressed MS patients. No correlation was evident for other neurocognitive measures. Taken together these results demonstrate that clinical disease activity and differences in disease courses are reflected by changes in KP metabolites. Increased QUIN levels of RRMS patients in relapse and generally decreased levels of TRP in SPMS may relate to neurotoxicity and failure of remyelination, respectively. In contrast, PPMS patients displayed a more divergent pattern more resembling inflammatory conditions such as systemic lupus erythematosus. The pattern of KP metabolites in RRMS patients could not predict neurocognitive symptoms.

54 citations


Cites background from "Impaired Kynurenine Pathway Metabol..."

  • ...Thus, in psychosis, KYNA and its precursor KYN are increased in cerebrospinal fluid (CSF) and post mortem brain tissue (Erhardt et al., 2001; Sathyasaikumar et al., 2011; Schwarcz et al., 2001)....

    [...]

Journal ArticleDOI
TL;DR: These studies suggest that high- and medium-risk SGAs are associated with disruption of energy metabolism pathways, and may shed light on the molecular underpinnings of antipsychotic-induced MetS and aid in design of novel therapeutic approaches to reduce the side effects associated with these drugs.
Abstract: Second-generation antipsychotics (SGAs) are commonly used to treat schizophrenia. However, SGAs cause metabolic disturbances that can manifest as metabolic syndrome (MetS) in a subset of patients. The causes for these metabolic disturbances remain unclear. We performed a comprehensive metabolomic profiling of 60 schizophrenia patients undergoing treatment with SGAs that puts them at high (clozapine, olanzapine), medium (quetiapine, risperidone), or low (ziprasidone, aripiprazole) risk for developing MetS, compared to a cohort of 20 healthy controls. Multiplex immunoassays were used to measure 13 metabolic hormones and adipokines in plasma. Mass spectrometry was used to determine levels of lipids and polar metabolites in 29 patients and 10 controls. We found that levels of insulin and tumor necrosis factor alpha (TNF-α) were significantly higher ( p < 0.005) in patients at medium and high risk for MetS, compared to controls. These molecules are known to be increased in individuals with high body fat content and obesity. On the other hand, adiponectin, a molecule responsible for control of food intake and body weight, was significantly decreased in patients at medium and high risk for MetS ( p < 0.005). Further, levels of dyacylglycerides (DG), tryacylglycerides (TG) and cholestenone were increased, whereas α-Ketoglutarate and malate, important mediators of the tricarboxylic acid (TCA) cycle, were significantly decreased in patients compared to controls. Our studies suggest that high- and medium-risk SGAs are associated with disruption of energy metabolism pathways. These findings may shed light on the molecular underpinnings of antipsychotic-induced MetS and aid in design of novel therapeutic approaches to reduce the side effects associated with these drugs.

51 citations


Cites background from "Impaired Kynurenine Pathway Metabol..."

  • ...It has been postulated that the increased levels of kynurenine observed in schizophrenia are independent of medication (Schwarcz et al., 2001; Sathyasaikumar et al., 2011)....

    [...]

References
More filters
Journal Article
TL;DR: Procedures are described for measuring protein in solution or after precipitation with acids or other agents, and for the determination of as little as 0.2 gamma of protein.

289,852 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed patterns of frontal-lobe activation associated with a broad range of different cognitive demands, including aspects of perception, response selection, executive control, working memory, episodic memory and problem solving.

2,429 citations


"Impaired Kynurenine Pathway Metabol..." refers result in this paper

  • ...The activity of 3-HAO, which catalyzes the formation of the NMDA receptor agonist quinolinic acid from 3hydroxyanthranilic acid, was found to be reduced in BA 9, ie, the dorsolateral subdivision of the PFC that is preferentially involved in sustaining attention and working memory.(48) A tendency toward lower 3-HAO activity was also observed in BA 10, though the results were not statistically significant....

    [...]

Journal ArticleDOI
TL;DR: Hypofunction of the NMDA receptor, possibly on critical GABAergic inter-neurons, may contribute to the pathophysiology of schizophrenia.
Abstract: 1. After 50 years of antipsychotic drug development focused on the dopamine D2 receptor, schizophrenia remains a chronic, disabling disorder for most affected individuals.

886 citations

Journal ArticleDOI
TL;DR: It is demonstrated that nAChRs are targets for KYNA and suggest a functionally significant cross talk between the nicotinic cholinergic system and the kynurenine pathway in the brain.
Abstract: The tryptophan metabolite kynurenic acid (KYNA) has long been recognized as an NMDA receptor antagonist. Here, interactions between KYNA and the nicotinic system in the brain were investigated using the patch-clamp technique and HPLC. In the electrophysiological studies, agonists were delivered via a U-shaped tube, and KYNA was applied in admixture with agonists and via the background perfusion. Exposure (≥4 min) of cultured hippocampal neurons to KYNA (≥100 nm) inhibited activation of somatodendritic α7 nAChRs; the IC50 for KYNA was ∼7 μm. The inhibition of α7 nAChRs was noncompetitive with respect to the agonist and voltage independent. The slow onset of this effect could not be accounted for by an intracellular action because KYNA (1 mm) in the pipette solution had no effect on α7 nAChR activity. KYNA also blocked the activity of preterminal/presynaptic α7 nAChRs in hippocampal neurons in cultures and in slices. NMDA receptors were less sensitive than α7 nAChRs to KYNA. The IC50 values for KYNA-induced blockade of NMDA receptors in the absence and presence of glycine (10 μm) were ∼15 and 235 μm, respectively. Prolonged (3 d) exposure of cultured hippocampal neurons to KYNA increased their nicotinic sensitivity, apparently by enhancing α4β2 nAChR expression. Furthermore, as determined by HPLC with fluorescence detection, repeated systemic treatment of rats with nicotine caused a transient reduction followed by an increase in brain KYNA levels. These results demonstrate that nAChRs are targets for KYNA and suggest a functionally significant cross talk between the nicotinic cholinergic system and the kynurenine pathway in the brain.

764 citations

Journal ArticleDOI
TL;DR: Kynurenate‐type compounds inhibit glycine binding and are suggested to form a novel class of antagonists of the NMDA receptor acting through the glycine site, suggesting the existence of a dual and opposite modulation of NMDA receptors by endogenous ligands.
Abstract: Membranes from rat telencephalon contain a single class of strychnine-insensitive glycine sites. That these sites are associated with N-methyl-D-aspartic acid (NMDA) receptors is indicated by the observations that [3H]glycine binding is selectively modulated by NMDA receptor ligands and, conversely, that several amino acids interacting with the glycine sites increase [3H]N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding to the phencyclidine site of the NMDA receptor. The endogenous compound kynurenate and several related quinoline and quinoxaline derivatives inhibit glycine binding with affinities that are much higher than their affinities for glutamate binding sites. In contrast to glycine, kynurenate-type compounds inhibit [3H]TCP binding and thus are suggested to form a novel class of antagonists of the NMDA receptor acting through the glycine site. These results suggest the existence of a dual and opposite modulation of NMDA receptors by endogenous ligands.

623 citations


"Impaired Kynurenine Pathway Metabol..." refers background in this paper

  • ...linked to cognitive phenomena and psychosis, ie, the a7 nicotinic acetylcholine receptor (a7nAChR)(12) and the N-methyl-D-aspartate (NMDA) receptor.(13) By reducing...

    [...]