scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Impaired Kynurenine Pathway Metabolism in The Prefrontal Cortex of Individuals With Schizophrenia

TL;DR: The present results further support the hypothesis that the normalization of cortical KP metabolism may constitute an effective new treatment strategy in SZ.
Abstract: The levels of kynurenic acid (KYNA), an astrocyte-derived metabolite of the branched kynurenine pathway (KP) of tryptophan degradation and antagonist of α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors, are elevated in the prefrontal cortex (PFC) of individuals with schizophrenia (SZ). Because endogenous KYNA modulates extracellular glutamate and acetylcholine levels in the PFC, these increases may be pathophysiologically significant. Using brain tissue from SZ patients and matched controls, we now measured the activity of several KP enzymes (kynurenine 3-monooxygenase [KMO], kynureninase, 3-hydroxyanthranilic acid dioxygenase [3-HAO], quinolinic acid phosphoribosyltransferase [QPRT], and kynurenine aminotransferase II [KAT II]) in the PFC, ie, Brodmann areas (BA) 9 and 10. Compared with controls, the activities of KMO (in BA 9 and 10) and 3-HAO (in BA 9) were significantly reduced in SZ, though there were no significant differences between patients and controls in kynureninase, QPRT, and KAT II. In the same samples, we also confirmed the increase in the tissue levels of KYNA in SZ. As examined in rats treated chronically with the antipsychotic drug risperidone, the observed biochemical changes were not secondary to medication. A persistent reduction in KMO activity may have a particular bearing on pathology because it may signify a shift of KP metabolism toward enhanced KYNA synthesis. The present results further support the hypothesis that the normalization of cortical KP metabolism may constitute an effective new treatment strategy in SZ.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: With recently developed pharmacological agents, it is now possible to restore metabolic equilibrium and envisage novel therapeutic interventions on the basis of the kynurenine pathway.
Abstract: The essential amino acid tryptophan is not only a precursor of serotonin but is also degraded to several other neuroactive compounds, including kynurenic acid, 3-hydroxykynurenine and quinolinic acid. The synthesis of these metabolites is regulated by an enzymatic cascade, known as the kynurenine pathway, that is tightly controlled by the immune system. Dysregulation of this pathway, resulting in hyper-or hypofunction of active metabolites, is associated with neurodegenerative and other neurological disorders, as well as with psychiatric diseases such as depression and schizophrenia. With recently developed pharmacological agents, it is now possible to restore metabolic equilibrium and envisage novel therapeutic interventions.

1,097 citations

Journal ArticleDOI
TL;DR: An overview of the physiological and pathophysiological roles of tryptophan metabolism is provided, focusing on the clinical potential and challenges associated with targeting this pathway.
Abstract: L-Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is involved in the regulation of immunity, neuronal function and intestinal homeostasis. Imbalances in Trp metabolism in disorders ranging from cancer to neurodegenerative disease have stimulated interest in therapeutically targeting the KP, particularly the main rate-limiting enzymes indoleamine-2,3-dioxygenase 1 (IDO1), IDO2 and tryptophan-2,3-dioxygenase (TDO) as well as kynurenine monooxygenase (KMO). However, although small-molecule IDO1 inhibitors showed promise in early-stage cancer immunotherapy clinical trials, a phase III trial was negative. This Review summarizes the physiological and pathophysiological roles of Trp metabolism, highlighting the vast opportunities and challenges for drug development in multiple diseases.

664 citations

Journal ArticleDOI
TL;DR: Support for the relevance of a low-level neuroinflammatory process in schizophrenia is provided by the loss of central nervous system volume and microglial activation demonstrated in neuroimaging studies, and the benefit of anti-inflammatory medications found in some studies and the intrinsic anti- inflammatory and immunomodulatory effects of antipsychotics provide further support for the role of inflammation in this debilitating disease.
Abstract: This paper discusses the current evidence from animal and human studies for a central role of inflammation in schizophrenia. In animal models, pre- or perinatal elicitation of the immune response may increase immune reactivity throughout life, and similar findings have been described in humans. Levels of pro-inflammatory markers, such as cytokines, have been found to be increased in the blood and cerebrospinal fluid of patients with schizophrenia. Numerous epidemiological and clinical studies have provided evidence that various infectious agents are risk factors for schizophrenia and other psychoses. For example, a large-scale epidemiological study performed in Denmark clearly showed that severe infections and autoimmune disorders are such risk factors. The vulnerability-stress-inflammation model may help to explain the role of inflammation in schizophrenia because stress can increase pro-inflammatory cytokines and may even contribute to a chronic pro-inflammatory state. Schizophrenia is characterized by risk genes that promote inflammation and by environmental stress factors and alterations of the immune system. Typical alterations of dopaminergic, serotonergic, noradrenergic, and glutamatergic neurotransmission described in schizophrenia have also been found in low-level neuroinflammation and consequently may be key factors in the generation of schizophrenia symptoms. Further support for the relevance of a low-level neuroinflammatory process in schizophrenia is provided by the loss of central nervous system volume and microglial activation demonstrated in neuroimaging studies. Last but not least, the benefit of anti-inflammatory medications found in some studies and the intrinsic anti-inflammatory and immunomodulatory effects of antipsychotics provide further support for the role of inflammation in this debilitating disease.

342 citations

Journal ArticleDOI
TL;DR: Anti-inflammatory effects of antipsychotics, therapeutic effects of anti-inflammtory compounds, genetic, biochemical, and immunological findings point to a major role of inflammation in schizophrenia.
Abstract: High levels of pro-inflammatory substances such as cytokines have been described in the blood and cerebrospinal fluid of schizophrenia patients. Animal models of schizophrenia show that under certain conditions an immune disturbance during early life, such as an infection-triggered immune activation, might trigger lifelong increased immune reactivity. A large epidemiological study clearly demonstrated that severe infections and autoimmune disorders are risk factors for schizophrenia. Genetic studies have shown a strong signal for schizophrenia on chromosome 6p22.1, in a region related to the human leucocyte antigen (HLA) system and other immune functions. Another line of evidence demonstrates that chronic (dis)stress is associated with immune activation. The vulnerability-stress-inflammation model of schizophrenia includes the contribution of stress on the basis of increased genetic vulnerability for the pathogenesis of schizophrenia, because stress may increase pro-inflammatory cytokines and even contribute to a lasting pro-inflammatory state. Immune alterations influence the dopaminergic, serotonergic, noradrenergic, and glutamatergic neurotransmission. The activated immune system in turn activates the enzyme indoleamine 2,3-dioxygenase (IDO) of the tryptophan/kynurenine metabolism which influences the serotonergic and glutamatergic neurotransmission via neuroactive metabolites such as kynurenic acid. The described loss of central nervous system volume and the activation of microglia, both of which have been clearly demonstrated in neuroimaging studies of schizophrenia patients, match the assumption of a (low level) inflammatory neurotoxic process. Further support for the inflammatory hypothesis comes from the therapeutic benefit of anti-inflammatory medication. Metaanalyses have shown an advantageous effect of cyclo-oxygenase-2 inhibitors in early stages of schizophrenia. Moreover, intrinsic anti-inflammatory, and immunomodulatory effects of antipsychotic drugs are known since a long time. Anti-inflammatory effects of antipsychotics, therapeutic effects of anti-inflammtory compounds, genetic, biochemical, and immunological findings point to a major role of inflammation in schizophrenia.

324 citations


Cites background from "Impaired Kynurenine Pathway Metabol..."

  • ...Elevated kynurenic acid has mainly been described in the CSF (Erhardt et al., 2001; Linderholm et al., 2012), in the brains of schizophrenia patients (Schwarcz et al., 2001; Sathyasaikumar et al., 2011) and in animal models of schizophrenia (Olsson et al., 2009)....

    [...]

Journal ArticleDOI
TL;DR: The purposes of this special feature are to clarify the key findings on inflammation in schizophrenia, identify major gaps in the literature, and suggest priorities for research in this area.
Abstract: An association between inflammatory abnormalities and schizophrenia has been found repeatedly. The purposes of this special feature are to clarify the key findings on inflammation in schizophrenia, identify major gaps in the literature, and suggest priorities for research in this area. What is inflammation? Inflammation is one of the body’s first lines of defense in response to injury or infection, and increased inflammation is found in many diseases. Acute inflammation is a nonspecific response characterized by warmth, pain, and swelling. Leukocytes migrate to the area of injury and become activated, the blood supply to the area increases, and blood vessels become more permeable, allowing cells and molecules to leave blood vessels and enter the injured tissue. The inflammatory response also involves the complement system, a group of proteins that, when activated, combine to form a complex molecular structure that kills cells, usually bacteria and parasites. Cytokines are key molecules that regulate inflammation; they also have important roles in the immune system. They are produced by a wide variety of immune cells and cells outside of the immune system. The term cytokine derives from their ability to influence the movement of inflammatory cells, but they also have other functions. Chronic inflammation is usually a lower grade response, lacks the grossly visible signs of acute inflammation, and may be systemic rather than localized. Chronic inflammation plays a role in the pathophysiology of many chronic diseases, including cardiovascular and cerebrovascular disease, diabetes, Alzheimer’s disease, and some cancers. The characteristics of chronic inflammation differ somewhat in the brain from what occurs in other tissues. An important component of neuroinflammation is the microglial activation. The brain contains relatively few of the inflammatory cells that are found outside the brain. Microglia, which are related to the peripheral inflammatory cells, serve some of the protective functions such cells play in the rest of the body. Microglia are involved in other brain functions, including the pruning and maintenance of synapses, trafficking of neurotransmitters, and devouring—phagocytosis—of cell fragments and damaged cells. Activated microglia produce inflammatory cytokines and the phagocytose cells or proteins that provoke the inflammatory response. Microglial activation and subsequent proinflammatory cytokine production may disrupt the blood-brain barrier (BBB). An intact BBB usually tightly controls the entry of cytokines and leukocytes into brain tissue. Damage to the BBB impairs its ability to control which inflammatory cells and molecules enter the brain; other substances leak into brain tissue, and the brain is unable to function normally.

280 citations

References
More filters
Journal ArticleDOI
TL;DR: Pharmacological agents targeting specific KP enzymes can be used to normalize KP defects, show remarkable efficacy in animal models of central nervous system disorders, and offer novel therapeutic opportunities.
Abstract: Degradation of the essential amino acid tryptophan along the kynurenine pathway (KP) yields several neuroactive intermediates, including the free radical generator 3-hydroxykynurenine, the excitotoxic N-methyl-D-aspartate (NMDA) receptor agonist quinolinic acid, and the NMDA and alpha7 nicotinic acetylcholine receptor antagonist kynurenic acid. The ambient levels of these compounds are determined by several KP enzymes, which in the brain are preferentially localized in astrocytes and microglial cells. Normal fluctuations in the brain levels of neuroactive KP intermediates might modulate several neurotransmitter systems. Impairment of KP metabolism is functionally significant and occurs in a variety of diseases that affect the brain. Pharmacological agents targeting specific KP enzymes are now available to manipulate the concentration of neuroactive KP intermediates in the brain. These compounds can be used to normalize KP defects, show remarkable efficacy in animal models of central nervous system disorders, and offer novel therapeutic opportunities.

546 citations

Journal ArticleDOI
TL;DR: In rats, chronic treatment with haloperidol did not cause an increase in kynurenate levels in the frontal cortex, indicating that the elevation observed in schizophrenia is not due to antipsychotic medication.

538 citations


"Impaired Kynurenine Pathway Metabol..." refers background in this paper

  • ...Irrespective of the underlying enzymatic and cellular mechanism(s), there are reasons to assume that the observed increase in prefrontal KYNA levels plays a role in the pathophysiology of SZ.(22,64) Within the PFC, astrocyte-derived KYNA controls the levels of acetylcholine and glutamate(14,15,20) by initially targeting and thus reducing the activity of a7nAChRs....

    [...]

  • ...We reported previously that KYNA levels in the PFC are significantly elevated in individuals with SZ.(22) The present study constitutes a first effort to explore the cause(s) of these high KYNA levels....

    [...]

  • ...Postmortem analysis reveals that kynurenine levels are elevated in the PFC of patients, and this increase is correlated with KYNA levels in the same tissue.(22) The explanation for this nexus seems unambiguous because the high Km of KAT II and all other cerebral kynurenine aminotransferases allows for a proportional increase in KYNA formation when kynurenine levels rise....

    [...]

  • ...The question then arises whether and how specific impairments in KP enzymes might account for the significant increases in prefrontal KYNA levels in SZ, which were originally described in 2001.(22) The most parsimonious explanation would be that a reduction in KMO activity eventually triggers a shift in cerebral KP metabolism Fig....

    [...]

Journal ArticleDOI
TL;DR: Activated microglia are present in schizophrenia patients within the first 5 years of disease onset, which suggests that, in this period, neuronal injury is present and that neuronal damage may be involved in the loss of gray matter associated with this disease.

529 citations

Journal ArticleDOI
TL;DR: It is shown that kynurenine in concentrations comparable with those produced by astrocytes led to significant production of QUIN by macrophages, suggesting that astroCytes alone are neuroprotective by minimizing QUIN production and maximizing synthesis of kynurenic acid.
Abstract: There is good evidence that the kynurenine pathway (KP) and one of its products, quinolinic acid (QUIN), play a role in the pathogenesis of neurological diseases, in particular AIDS dementia complex. Although QUIN has been shown to be produced in neurotoxic concentrations by macrophages and microglia, the role of astrocytes in QUIN production is controversial. Using cytokine-stimulated cultures of human astrocytes, we assayed key enzymes and products of the KP. We found that human astrocytes lack kynurenine hydroxylase so that large amounts of kynurenine and the QUIN antagonist kynurenic acid were produced. However, the amounts of QUIN that were synthesized were subsequently completely degraded. We then showed that kynurenine in concentrations comparable with those produced by astrocytes led to significant production of QUIN by macrophages. These results suggest that astrocytes alone are neuroprotective by minimizing QUIN production and maximizing synthesis of kynurenic acid. However, it is likely that, in the presence of macrophages and/or microglia, astrocytes become indirectly neurotoxic by the production of large concentrations of kynurenine that can be secondarily metabolized by neighbouring or infiltrating monocytic cells to form the neurotoxin QUIN.

475 citations


"Impaired Kynurenine Pathway Metabol..." refers background in this paper

  • ...In the brain, kynurenine gives rise to two physically segregated branches of the pathway, producing 3-hydroxykynurenine and its downstream metabolites 3-hydroxyanthranilic acid and quinolinic acid in microglial cells and KYNA in astrocytes (cf Introduction).(23) Excessive formation of the three microglial compounds, which are neurotoxins and generators of highly reactive free radicals, may play significant roles in brain pathology....

    [...]

Journal ArticleDOI
TL;DR: Findings suggest specific targets for therapeutic interventions to improve cognitive function in individuals with schizophrenia through impaired signaling via the N-methyl-d-aspartate class of glutamate receptors.
Abstract: Impairments in certain cognitive functions mediated by the dorsolateral prefrontal cortex, such as working memory, are core features of schizophrenia. Convergent findings suggest that these disturbances are associated with alterations in markers of inhibitory gamma-aminobutyric acid and excitatory glutamate neurotransmission in the dorsolateral prefrontal cortex. Specifically, reduced gamma-aminobutyric acid synthesis is present in the subpopulation of gamma-aminobutyric acid neurons that express the calcium-binding protein parvalbumin. Despite presynaptic and postsynaptic compensatory responses, the resulting impaired inhibitory regulation of pyramidal neurons contributes to a reduction in the synchronized neuronal activity that is required for working memory function. Several lines of evidence suggest that these changes may be either secondary to or exacerbated by impaired signaling via the N-methyl-d-aspartate class of glutamate receptors. These findings suggest specific targets for therapeutic interventions to improve cognitive function in individuals with schizophrenia.

433 citations


"Impaired Kynurenine Pathway Metabol..." refers background in this paper

  • ...In the same samples, we also confirmed the increase in the tissue levels of KYNA in SZ....

    [...]

  • ...The present results further support the hypothesis that the normalization of cortical KP metabolism may constitute an effective new treatment strategy in SZ....

    [...]

  • ...This further supports the notion that distinct, rather than generalized, KP impairments exist in the brain of patients with SZ....

    [...]

  • ...Alternatively or quite possibly in addition, kynurenine levels in the SZ brain might be elevated due to increased activity of the biosynthetic enzymes tryptophan 2,3- dioxygenase60 or indoleamine-2,3-dioxygenase.43 Notably, these two enzymes, like the entire cerebral KP pathway, are preferentially localized in glial cells,23,60–62 and newly produced kynurenine is readily liberated into the extracellular compartment.63 Irrespective of the underlying enzymatic and cellular mechanism(s), there are reasons to assume that the observed increase in prefrontal KYNA levels plays a role in the pathophysiology of SZ.22,64 Within the PFC, astrocyte-derived KYNA controls the levels of acetylcholine and glutamate14,15,20 by initially targeting and thus reducing the activity of a7nAChRs.12 Thus, increased KYNA levels trigger or exacerbate the nicotinergic and glutamatergic deficits, which have been credibly linked to both cognitive dysfunctions and psychotic manifestations in humans (cf Introduction).1–3,65,66 The demonstration of distinct impairments in cerebral KP metabolism in SZ, which are also observed in the basal ganglia,67 raises the prospect that more than one KP enzyme could be targeted to provide clinical benefits in the disease....

    [...]

  • ...We have previously proposed that this can be exploited for the treatment of Huntington’s disease and other neurodegenerative disorders by cautiously targeting KMO with specific enzyme inhibitors.40 The present study revealed a significant decrease in KMO activity in the PFC of individuals with SZ....

    [...]