scispace - formally typeset
Search or ask a question
Posted Content

Implications of the virus-encoded miRNA and host miRNA in the pathogenicity of SARS-CoV-2

TL;DR: The results implicated that the immune response and cytoskeleton organization are two of the most notable biological processes regulated by the infection-modulated miRNAs, and may provide important clues for the mechisms of pathogenesis of SARS-CoV-2.
Abstract: The outbreak of COVID-19 caused by SARS-CoV-2 has rapidly spread worldwide and has caused over 1,400,000 infections and 80,000 deaths. There are currently no drugs or vaccines with proven efficacy for its prevention and little knowledge was known about the pathogenicity mechanism of SARS-CoV-2 infection. Previous studies showed both virus and host-derived MicroRNAs (miRNAs) played crucial roles in the pathology of virus infection. In this study, we use computational approaches to scan the SARS-CoV-2 genome for putative miRNAs and predict the virus miRNA targets on virus and human genome as well as the host miRNAs targets on virus genome. Furthermore, we explore miRNAs involved dysregulation caused by the virus infection. Our results implicated that the immune response and cytoskeleton organization are two of the most notable biological processes regulated by the infection-modulated miRNAs. Impressively, we found hsa-miR-4661-3p was predicted to target the S gene of SARS-CoV-2, and a virus-encoded miRNA MR147-3p could enhance the expression of TMPRSS2 with the function of strengthening SARS-CoV-2 infection in the gut. The study may provide important clues for the mechisms of pathogenesis of SARS-CoV-2.
Citations
More filters
Journal ArticleDOI
04 Jun 2020-Viruses
TL;DR: KEGG pathway analysis revealed a number of critical pathways linked to the seven identified miRs that may provide insight into the interplay between the virus and comorbidities, and miRNAs may constitute potential and effective therapeutic approaches in COVID-19 and its pathological consequences.
Abstract: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the betacoronavirus family, which causes COVID-19 disease. SARS-CoV-2 pathogenicity in humans leads to increased mortality rates due to alterations of significant pathways, including some resulting in exacerbated inflammatory responses linked to the “cytokine storm” and extensive lung pathology, as well as being linked to a number of comorbidities. Our current study compared five SARS-CoV-2 sequences from different geographical regions to those from SARS, MERS and two cold viruses, OC43 and 229E, to identify the presence of miR-like sequences. We identified seven key miRs, which highlight considerable differences between the SARS-CoV-2 sequences, compared with the other viruses. The level of conservation between the five SARS-CoV-2 sequences was identical but poor compared with the other sequences, with SARS showing the highest degree of conservation. This decrease in similarity could result in reduced levels of transcriptional control, as well as a change in the physiological effect of the virus and associated host-pathogen responses. MERS and the milder symptom viruses showed greater differences and even significant sequence gaps. This divergence away from the SARS-CoV-2 sequences broadly mirrors the phylogenetic relationships obtained from the whole-genome alignments. Therefore, patterns of mutation, occurring during sequence divergence from the longer established human viruses to the more recent ones, may have led to the emergence of sequence motifs that can be related directly to the pathogenicity of SARS-CoV-2. Importantly, we identified 7 key-microRNAs (miRs 8066, 5197, 3611, 3934-3p, 1307-3p, 3691-3p, 1468-5p) with significant links to KEGG pathways linked to viral pathogenicity and host responses. According to Bioproject data (PRJNA615032), SARS-CoV-2 mediated transcriptomic alterations were similar to the target pathways of the selected 7 miRs identified in our study. This mechanism could have considerable significance in determining the symptom spectrum of future potential pandemics. KEGG pathway analysis revealed a number of critical pathways linked to the seven identified miRs that may provide insight into the interplay between the virus and comorbidities. Based on our reported findings, miRNAs may constitute potential and effective therapeutic approaches in COVID-19 and its pathological consequences.

87 citations

Journal ArticleDOI
TL;DR: A general review of current studies concerning the function of miRNAs in different VRIs, particularly in coronavirus infection, and address all available therapeutic prospects to mitigate the burden of viral infections is presented.

63 citations


Cites background or methods from "Implications of the virus-encoded m..."

  • ...[114] used computational methods to investigate the SARSCoV-2 genome for alleged miRNAs and detected the viral miRNA targets on the virus, and human genome simultaneously and also detected the human miRNAs that can target the viral genome....

    [...]

  • ...Besides, they examined miRNAs implicated in dysregulation prompted by a viral disease that involved the immunity and cytoskeleton structure, which are the common critical biological means modulated by the miRNAs, induced by infection [114]....

    [...]

Journal ArticleDOI
TL;DR: Subsets of genomes from SARS-CoV-2 isolates from around the globe are analysed and show that several mutations introduce changes in Watson–Crick pairing, with resultant changes in predicted secondary structure, and the impact of these and further mutations on secondary structures, miRNA targets or potential splice sites is offered.
Abstract: The SARS-CoV-2 virus is a recently-emerged zoonotic pathogen already well adapted to transmission and replication in humans. Although the mutation rate is limited, recently introduced mutations in SARS-CoV-2 have the potential to alter viral fitness. In addition to amino acid changes, mutations could affect RNA secondary structure critical to viral life cycle, or interfere with sequences targeted by host miRNAs. We have analysed subsets of genomes from SARS-CoV-2 isolates from around the globe and show that several mutations introduce changes in Watson-Crick pairing, with resultant changes in predicted secondary structure. Filtering to targets matching miRNAs expressed in SARS-CoV-2-permissive host cells, we identified ten separate target sequences in the SARS-CoV-2 genome; three of these targets have been lost through conserved mutations. A genomic site targeted by the highly abundant miR-197-5p, overexpressed in patients with cardiovascular disease, is lost by a conserved mutation. Our results are compatible with a model that SARS-CoV-2 replication within the human host is constrained by host miRNA defences. The impact of these and further mutations on secondary structures, miRNA targets or potential splice sites offers a new context in which to view future SARS-CoV-2 evolution, and a potential platform for engineering conditional attenuation to vaccine development, as well as providing a better understanding of viral tropism and pathogenesis.

59 citations

Journal ArticleDOI
TL;DR: This review work delineated COVID-19 and its association with SARS and Middle East respiratory syndrome (MERS), the possible role of miRNAs in the pathogenesis of CO VID-19, and therapeutic potential of mi RNAs and their effective delivery to treat COVID -19.
Abstract: The novel coronavirus (CoV) disease 2019 (COVID-19) is a viral infection that causes severe acute respiratory syndrome (SARS). It is believed that early reports of COVID-19 cases were noticed in De...

57 citations


Cites background from "Implications of the virus-encoded m..."

  • ...3p and miRNA 359-5p that target and enhance the activity of Adenosine Deaminases Acting on RNA (ADAR) and non-muscle myosin heavy chain 9 (MYH9), respectively [64]....

    [...]

  • ...CHAC1 and RAD9A are two crucial proteins for apoptosis [63] and found to be targeted by two SARS-CoV-2 viral miRNAs, namely as, miRNA MD2-5p and miRNA 147-3p [64]....

    [...]

  • ...miRNA 66-3p was identified to target the transcription enhancer of TNF-α, a very well-known cytokine [64]....

    [...]

Journal ArticleDOI
TL;DR: The biological roles and effects of miRNAs on SARS-CoV-2 life-cycle and pathogenicity are described, and the modulation of the immune system with micro-RNAs which would serve as a new foundation for the treatment of Sars-COV2 and other viral infections are discussed.

44 citations


Cites background from "Implications of the virus-encoded m..."

  • ...Furthermore, another computational study found that virus miRNA has greater regulation of the biological process of the immune response and the cytoskeleton, which could create a greater effect on the viral life cycle [36]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of patients with laboratory-confirmed 2019-nCoV infection in Wuhan, China, were reported.

36,578 citations

Journal ArticleDOI
17 Mar 2020-JAMA
TL;DR: The epidemiological and clinical characteristics of novel coronavirus (2019-nCoV)-infected pneumonia in Wuhan, China, and hospital-associated transmission as the presumed mechanism of infection for affected health professionals and hospitalized patients are described.
Abstract: Importance In December 2019, novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, China. The number of cases has increased rapidly but information on the clinical characteristics of affected patients is limited. Objective To describe the epidemiological and clinical characteristics of NCIP. Design, Setting, and Participants Retrospective, single-center case series of the 138 consecutive hospitalized patients with confirmed NCIP at Zhongnan Hospital of Wuhan University in Wuhan, China, from January 1 to January 28, 2020; final date of follow-up was February 3, 2020. Exposures Documented NCIP. Main Outcomes and Measures Epidemiological, demographic, clinical, laboratory, radiological, and treatment data were collected and analyzed. Outcomes of critically ill patients and noncritically ill patients were compared. Presumed hospital-related transmission was suspected if a cluster of health professionals or hospitalized patients in the same wards became infected and a possible source of infection could be tracked. Results Of 138 hospitalized patients with NCIP, the median age was 56 years (interquartile range, 42-68; range, 22-92 years) and 75 (54.3%) were men. Hospital-associated transmission was suspected as the presumed mechanism of infection for affected health professionals (40 [29%]) and hospitalized patients (17 [12.3%]). Common symptoms included fever (136 [98.6%]), fatigue (96 [69.6%]), and dry cough (82 [59.4%]). Lymphopenia (lymphocyte count, 0.8 × 109/L [interquartile range {IQR}, 0.6-1.1]) occurred in 97 patients (70.3%), prolonged prothrombin time (13.0 seconds [IQR, 12.3-13.7]) in 80 patients (58%), and elevated lactate dehydrogenase (261 U/L [IQR, 182-403]) in 55 patients (39.9%). Chest computed tomographic scans showed bilateral patchy shadows or ground glass opacity in the lungs of all patients. Most patients received antiviral therapy (oseltamivir, 124 [89.9%]), and many received antibacterial therapy (moxifloxacin, 89 [64.4%]; ceftriaxone, 34 [24.6%]; azithromycin, 25 [18.1%]) and glucocorticoid therapy (62 [44.9%]). Thirty-six patients (26.1%) were transferred to the intensive care unit (ICU) because of complications, including acute respiratory distress syndrome (22 [61.1%]), arrhythmia (16 [44.4%]), and shock (11 [30.6%]). The median time from first symptom to dyspnea was 5.0 days, to hospital admission was 7.0 days, and to ARDS was 8.0 days. Patients treated in the ICU (n = 36), compared with patients not treated in the ICU (n = 102), were older (median age, 66 years vs 51 years), were more likely to have underlying comorbidities (26 [72.2%] vs 38 [37.3%]), and were more likely to have dyspnea (23 [63.9%] vs 20 [19.6%]), and anorexia (24 [66.7%] vs 31 [30.4%]). Of the 36 cases in the ICU, 4 (11.1%) received high-flow oxygen therapy, 15 (41.7%) received noninvasive ventilation, and 17 (47.2%) received invasive ventilation (4 were switched to extracorporeal membrane oxygenation). As of February 3, 47 patients (34.1%) were discharged and 6 died (overall mortality, 4.3%), but the remaining patients are still hospitalized. Among those discharged alive (n = 47), the median hospital stay was 10 days (IQR, 7.0-14.0). Conclusions and Relevance In this single-center case series of 138 hospitalized patients with confirmed NCIP in Wuhan, China, presumed hospital-related transmission of 2019-nCoV was suspected in 41% of patients, 26% of patients received ICU care, and mortality was 4.3%.

16,635 citations

Journal ArticleDOI
TL;DR: Characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia, and further investigation is needed to explore the applicability of the Mu LBSTA scores in predicting the risk of mortality in 2019-nCoV infection.

16,282 citations

Journal ArticleDOI
16 Apr 2020-Cell
TL;DR: It is demonstrated that SARS-CoV-2 uses the SARS -CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming, and it is shown that the sera from convalescent SARS patients cross-neutralized Sars-2-S-driven entry.

15,362 citations


"Implications of the virus-encoded m..." refers background in this paper

  • ...e were miRNA 2 targets at the 5′ UTR of the virus genome, and at the 2 S gene, which encodes a spike glycoprotein to bind its receptor ACE2 on human cells, and mediates membrane fusion and virus entry(5). Twenty-eight human miRNAs were predicted to have 30 targets on the SASRS-CoV-2 genome (Figure 5B). Most of the human miRNAs were bind to the , where the enzymes for virus replication ORF1ab and tran...

    [...]

Journal ArticleDOI
03 Feb 2020-Nature
TL;DR: Phylogenetic and metagenomic analyses of the complete viral genome of a new coronavirus from the family Coronaviridae reveal that the virus is closely related to a group of SARS-like coronaviruses found in bats in China.
Abstract: Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health1–3. Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here ‘WH-Human 1’ coronavirus (and has also been referred to as ‘2019-nCoV’). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China5. This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans. Phylogenetic and metagenomic analyses of the complete viral genome of a new coronavirus from the family Coronaviridae reveal that the virus is closely related to a group of SARS-like coronaviruses found in bats in China.

9,231 citations

Related Papers (5)