scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Implicit algorithms for eigenvector nonlinearities

02 Sep 2021-Numerical Algorithms (Springer US)-pp 1-21
TL;DR: In this article, the authors derive algorithms for nonlinear eigenvalue problems, where the system matrix depends on the eigenvector, or several eigenvectors (or their corresponding invariant subspace).
Abstract: We study and derive algorithms for nonlinear eigenvalue problems, where the system matrix depends on the eigenvector, or several eigenvectors (or their corresponding invariant subspace). The algorithms are derived from an implicit viewpoint. More precisely, we change the Newton update equation in a way that the next iterate does not only appear linearly in the update equation. Although the modifications of the update equation make the methods implicit, we show how corresponding iterates can be computed explicitly. Therefore, we can carry out steps of the implicit method using explicit procedures. In several cases, these procedures involve a solution of standard eigenvalue problems. We propose two modifications, one of the modifications leads directly to a well-established method (the self-consistent field iteration) whereas the other method is to our knowledge new and has several attractive properties. Convergence theory is provided along with several simulations which illustrate the properties of the algorithms.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: In this paper, a novel Riemannian gradient descent method induced by an energy-adaptive metric was proposed to solve nonlinear eigenvector problems such as Gross-Pitaevskii and Kohn-Sham equation arising in computational physics and chemistry.
Abstract: This paper addresses the numerical simulation of nonlinear eigenvector problems such as the Gross-Pitaevskii and Kohn-Sham equation arising in computational physics and chemistry. These problems characterize critical points of energy minimization problems on the infinite-dimensional Stiefel manifold. To efficiently compute minimizers, we propose a novel Riemannian gradient descent method induced by an energy-adaptive metric. Quantified convergence of the methods is established under suitable assumptions on the underlying problem. A non-monotone line search and the inexact evaluation of Riemannian gradients substantially improve the overall efficiency of the method. Numerical experiments illustrate the performance of the method and demonstrates its competitiveness with well-established schemes.

1 citations

Journal ArticleDOI
20 Jul 2022-ESAIM
TL;DR: In this article , a Riemannian gradient descent method induced by an energy-adaptive metric was proposed to solve nonlinear eigenvector problems arising in computational physics and chemistry.
Abstract: This paper addresses the numerical solution of nonlinear eigenvector problems such as the Gross–Pitaevskii and Kohn–Sham equation arising in computational physics and chemistry. These problems characterize critical points of energy minimization problems on the infinite-dimensional Stiefel manifold. To efficiently compute minimizers, we propose a novel Riemannian gradient descent method induced by an energy-adaptive metric. Quantified convergence of the methods is established under suitable assumptions on the underlying problem. A non-monotone line search and the inexact evaluation of Riemannian gradients substantially improve the overall efficiency of the method. Numerical experiments illustrate the performance of the method and demonstrates its competitiveness with well-established schemes.

1 citations

Posted Content
TL;DR: In this paper, a procedure to adapt the self-consistent field iteration for the p-Laplacian eigen problem was proposed, which is an important problem in the field of unsupervised learning.
Abstract: The self-consistent field (SCF) iteration, combined with its variants, is one of the most widely used algorithms in quantum chemistry. We propose a procedure to adapt the SCF iteration for the p-Laplacian eigenproblem, which is an important problem in the field of unsupervised learning. We formulate the p-Laplacian eigenproblem as a type of nonlinear eigenproblem with one eigenvector nonlinearity , which then allows us to adapt the SCF iteration for its solution after the application of suitable regularization techniques. The results of our numerical experiments confirm the viablity of our approach.
References
More filters
Book
01 Jan 1964
TL;DR: The real and complex number system as discussed by the authors is a real number system where the real number is defined by a real function and the complex number is represented by a complex field of functions.
Abstract: Chapter 1: The Real and Complex Number Systems Introduction Ordered Sets Fields The Real Field The Extended Real Number System The Complex Field Euclidean Spaces Appendix Exercises Chapter 2: Basic Topology Finite, Countable, and Uncountable Sets Metric Spaces Compact Sets Perfect Sets Connected Sets Exercises Chapter 3: Numerical Sequences and Series Convergent Sequences Subsequences Cauchy Sequences Upper and Lower Limits Some Special Sequences Series Series of Nonnegative Terms The Number e The Root and Ratio Tests Power Series Summation by Parts Absolute Convergence Addition and Multiplication of Series Rearrangements Exercises Chapter 4: Continuity Limits of Functions Continuous Functions Continuity and Compactness Continuity and Connectedness Discontinuities Monotonic Functions Infinite Limits and Limits at Infinity Exercises Chapter 5: Differentiation The Derivative of a Real Function Mean Value Theorems The Continuity of Derivatives L'Hospital's Rule Derivatives of Higher-Order Taylor's Theorem Differentiation of Vector-valued Functions Exercises Chapter 6: The Riemann-Stieltjes Integral Definition and Existence of the Integral Properties of the Integral Integration and Differentiation Integration of Vector-valued Functions Rectifiable Curves Exercises Chapter 7: Sequences and Series of Functions Discussion of Main Problem Uniform Convergence Uniform Convergence and Continuity Uniform Convergence and Integration Uniform Convergence and Differentiation Equicontinuous Families of Functions The Stone-Weierstrass Theorem Exercises Chapter 8: Some Special Functions Power Series The Exponential and Logarithmic Functions The Trigonometric Functions The Algebraic Completeness of the Complex Field Fourier Series The Gamma Function Exercises Chapter 9: Functions of Several Variables Linear Transformations Differentiation The Contraction Principle The Inverse Function Theorem The Implicit Function Theorem The Rank Theorem Determinants Derivatives of Higher Order Differentiation of Integrals Exercises Chapter 10: Integration of Differential Forms Integration Primitive Mappings Partitions of Unity Change of Variables Differential Forms Simplexes and Chains Stokes' Theorem Closed Forms and Exact Forms Vector Analysis Exercises Chapter 11: The Lebesgue Theory Set Functions Construction of the Lebesgue Measure Measure Spaces Measurable Functions Simple Functions Integration Comparison with the Riemann Integral Integration of Complex Functions Functions of Class L2 Exercises Bibliography List of Special Symbols Index

6,681 citations

Book
01 Jan 1982
TL;DR: In this paper, modern in-depth approaches to the calculation of the electronic structure and properties of molecules Hartree-Fock approximation, electron pair approximation, much more Largely self-contained, only prerequisite is solid course in physical chemistry Over 150 exercises 1989 edition
Abstract: Graduate-level text explains modern in-depth approaches to the calculation of the electronic structure and properties of molecules Hartree-Fock approximation, electron pair approximation, much more Largely self-contained, only prerequisite is solid course in physical chemistry Over 150 exercises 1989 edition

3,110 citations

Journal ArticleDOI
TL;DR: The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide a top level mathematical view of previously unrelated algorithms and developers of new algorithms and perturbation theories will benefit from the theory.
Abstract: In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures computations, and signal processing. In addition to the new algorithms, we show how the geometrical framework gives penetrating new insights allowing us to create, understand, and compare algorithms. The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide a top level mathematical view of previously unrelated algorithms. It is our hope that developers of new algorithms and perturbation theories will benefit from the theory, methods, and examples in this paper.

2,686 citations

Journal ArticleDOI
TL;DR: In this article, a procedure is given for accelerating the convergence of slowly converging quasi-Newton-Raphson type algorithms for large systems of linear equations, where the number of parameters is so large that the calculation and storage of the hessian is no longer practical.

2,246 citations

MonographDOI
01 Jan 2008
TL;DR: A thorough and elegant treatment of the theory of matrix functions and numerical methods for computing them, including an overview of applications, new and unpublished research results, and improved algorithms.
Abstract: A thorough and elegant treatment of the theory of matrix functions and numerical methods for computing them, including an overview of applications, new and unpublished research results, and improved algorithms. Key features include a detailed treatment of the matrix sign function and matrix roots; a development of the theory of conditioning and properties of the Frechet derivative; Schur decomposition; block Parlett recurrence; a thorough analysis of the accuracy, stability, and computational cost of numerical methods; general results on convergence and stability of matrix iterations; and a chapter devoted to the f(A)b problem. Ideal for advanced courses and for self-study, its broad content, references and appendix also make this book a convenient general reference. Contains an extensive collection of problems with solutions and MATLAB implementations of key algorithms.

2,204 citations