scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability

26 Jan 2007-Science (American Association for the Advancement of Science)-Vol. 315, Iss: 5811, pp 493-497
TL;DR: It is demonstrated that the Pt3Ni( 111) surface is 10-fold more active for the ORR than the corresponding Pt(111) surface and 90-foldMore active than the current state-of-the-art Pt/C catalysts for PEMFC.
Abstract: The slow rate of the oxygen reduction reaction (ORR) in the polymer electrolyte membrane fuel cell (PEMFC) is the main limitation for automotive applications. We demonstrated that the Pt3Ni(111) surface is 10-fold more active for the ORR than the corresponding Pt(111) surface and 90-fold more active than the current state-of-the-art Pt/C catalysts for PEMFC. The Pt3Ni(111) surface has an unusual electronic structure (d-band center position) and arrangement of surface atoms in the near-surface region. Under operating conditions relevant to fuel cells, its near-surface layer exhibits a highly structured compositional oscillation in the outermost and third layers, which are Pt-rich, and in the second atomic layer, which is Ni-rich. The weak interaction between the Pt surface atoms and nonreactive oxygenated species increases the number of active sites for O2 adsorption.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
13 Jan 2017-Science
TL;DR: A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other, and opens up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions.
Abstract: BACKGROUND With a rising global population, increasing energy demands, and impending climate change, major concerns have been raised over the security of our energy future. Developing sustainable, fossil-free pathways to produce fuels and chemicals of global importance could play a major role in reducing carbon dioxide emissions while providing the feedstocks needed to make the products we use on a daily basis. One prospective goal is to develop electrochemical conversion processes that can convert molecules in the atmosphere (e.g., water, carbon dioxide, and nitrogen) into higher-value products (e.g., hydrogen, hydrocarbons, oxygenates, and ammonia) by coupling to renewable energy. Electrocatalysts play a key role in these energy conversion technologies because they increase the rate, efficiency, and selectivity of the chemical transformations involved. Today’s electrocatalysts, however, are inadequate. The grand challenge is to develop advanced electrocatalysts with the enhanced performance needed to enable widespread penetration of clean energy technologies. ADVANCES Over the past decade, substantial progress has been made in understanding several key electrochemical transformations, particularly those that involve water, hydrogen, and oxygen. The combination of theoretical and experimental studies working in concert has proven to be a successful strategy in this respect, yielding a framework to understand catalytic trends that can ultimately provide rational guidance toward the development of improved catalysts. Catalyst design strategies that aim to increase the number of active sites and/or increase the intrinsic activity of each active site have been successfully developed. The field of hydrogen evolution, for example, has seen important breakthroughs over the years in the development of highly active non–precious metal catalysts in acid. Notable advancements have also been made in the design of oxygen reduction and evolution catalysts, although there remains substantial room for improvement. The combination of theory and experiment elucidates the remaining challenges in developing further improved catalysts, often involving scaling relations among reactive intermediates. This understanding serves as an initial platform to design strategies to circumvent technical obstacles, opening up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions. OUTLOOK A systematic framework of combining theory and experiment in electrocatalysis helps to uncover broader governing principles that can be used to understand a wide variety of electrochemical transformations. These principles can be applied to other emerging and promising clean energy reactions, including hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, among others. Although current paradigms for catalyst development have been helpful to date, a number of challenges need to be successfully addressed in order to achieve major breakthroughs. One important frontier, for example, is the development of both experimental and computational methods that can rapidly elucidate reaction mechanisms on broad classes of materials and in a wide range of operating conditions (e.g., pH, solvent, electrolyte). Such efforts would build on current frameworks for understanding catalysis to provide the deeper insights needed to fine-tune catalyst properties in an optimal manner. The long-term goal is to continue improving the activity and selectivity of these catalysts in order to realize the prospects of using renewable energy to provide the fuels and chemicals that we need for a sustainable energy future.

7,062 citations


Cites background from "Improved Oxygen Reduction Activity ..."

  • ...Extended single-crystal surfaces of Pt3Ni(111), with a Pt-rich outermost layer caused by thermal annealing and restructuring in the near-surface region, were prepared (102)....

    [...]

Journal ArticleDOI
07 Jun 2012-Nature
TL;DR: Taking the step towards successful commercialization requires oxygen reduction electrocatalysts that meet exacting performance targets, and these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality.
Abstract: Fuel cells powered by hydrogen from secure and renewable sources are the ideal solution for non-polluting vehicles, and extensive research and development on all aspects of this technology over the past fifteen years has delivered prototype cars with impressive performances. But taking the step towards successful commercialization requires oxygen reduction electrocatalysts--crucial components at the heart of fuel cells--that meet exacting performance targets. In addition, these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality. Not all the catalyst approaches currently being pursued will meet those demands.

4,538 citations

Journal ArticleDOI
TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Abstract: A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.

3,918 citations

Journal ArticleDOI
09 Dec 2011-Science
TL;DR: The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an eg symmetry of surface transition metal cations in an oxide.
Abstract: The efficiency of many energy storage technologies, such as rechargeable metal-air batteries and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen evolution reaction (OER). We found that Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3–δ (BSCF) catalyzes the OER with intrinsic activity that is at least an order of magnitude higher than that of the state-of-the-art iridium oxide catalyst in alkaline media. The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an e g symmetry of surface transition metal cations in an oxide. The peak OER activity was predicted to be at an e g occupancy close to unity, with high covalency of transition metal–oxygen bonds.

3,876 citations

Journal ArticleDOI
TL;DR: This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts and metal-free catalysts.
Abstract: The recent advances in electrocatalysis for oxygen reduction reaction (ORR) for proton exchange membrane fuel cells (PEMFCs) are thoroughly reviewed. This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core–shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts, and metal-free catalysts. The recent development of ORR electrocatalysts with novel structures and compositions is highlighted. The understandings of the correlation between the activity and the shape, size, composition, and synthesis method are summarized. For the carbon-based materials, their performance and stability in fuel cells and comparisons with those of platinum are documented. The research directions as well as perspectives on the further development of more active and less expensive electrocatalysts are provided.

2,964 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors quantified the activities and voltage loss modes for state-of-the-art MEAs (membrane electrode assemblies), specifies performance goals needed for automotive application, and provides benchmark oxygen reduction activities for state of the art platinum electrocatalysts.
Abstract: The mass production of proton exchange membrane (PEM) fuel-cell-powered light-duty vehicles requires a reduction in the amount of Pt presently used in fuel cells. This paper quantifies the activities and voltage loss modes for state-of-the-art MEAs (membrane electrode assemblies), specifies performance goals needed for automotive application, and provides benchmark oxygen reduction activities for state-of-the-art platinum electrocatalysts using two different testing procedures to clearly establish the relative merit of candidate catalysts. A pathway to meet the automotive goals is charted, involving the further development of durable, high-activity Pt-alloy catalysts. The history, status in recent experiments, and prospects for Pt-alloy cathode catalysts are reviewed. The performance that would be needed for a cost-free non-Pt catalyst is defined quantitatively, and the behaviors of several published non-Pt catalyst systems (and logical extensions thereof), are compared to these requirements. Critical research topics are listed for the Pt-alloy catalysts, which appear to represent the most likely route to automotive fuel cells.

4,298 citations

Book ChapterDOI
TL;DR: The application of density functional theory to calculate adsorption properties, reaction pathways, and activation energies for surface chemical reactions is reviewed in this article, with particular emphasis on developing concepts that can be used to understand and predict variations in reactivity from one transition metal to the next or the effects of alloying, surface structure, and adsorbate-adsorbate interactions on the reactivity.
Abstract: The application of density functional theory to calculate adsorption properties, reaction pathways, and activation energies for surface chemical reactions is reviewed. Particular emphasis is placed on developing concepts that can be used to understand and predict variations in reactivity from one transition metal to the next or the effects of alloying, surface structure, and adsorbate-adsorbate interactions on the reactivity. Most examples discussed are concerned with the catalytic properties of transition metal surfaces, but it is shown that the calculational approach and the concepts developed to understand trends in reactivity for metals can also be used for sulfide and oxide catalysts.

2,131 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss progress in the understanding of electrocatalytic reactions through the study of model systems with surface spectroscopies and discuss the limitations of using pure metal single crystals and well-characterized bulk alloys as models for real catalysts.

1,864 citations

Journal ArticleDOI
TL;DR: Pt alloys involving 3d metals are better catalysts than Pt because the electronic structure of the Pt atoms in the surface of these alloys has been modified slightly, and it is shown that electrocatalysts can be designed on the basis of fundamental insight.
Abstract: The fuel cell is a promising alternative to environmentally unfriendly devices that are currently powered by fossil fuels. In the polymer electrolyte membrane fuel cell (PEMFC),the main fuel is hydrogen,which through its reaction with oxygen produces electricity with water as the only by-product. To make PEMFCs economically viable,there are several problems that should be solved; the main one is to find more effective catalysts than Pt for the oxygen reduction reaction (ORR),1/2 O 2 + 2H + + 2e = H2O. The design of inexpensive,stable,and catalytically active materials for the ORR will require fundamental breakthroughs,and to this end it is important to develop a fundamental understanding of the catalytic process on different materials. Herein,we describe how variations in the electronic structure determine trends in the catalytic activity of the ORR across the periodic table. We show that Pt alloys involving 3d metals are better catalysts than Pt because the electronic structure of the Pt atoms in the surface of these alloys has been modified slightly. With this understanding,we hope that electrocatalysts can begin to be designed on the basis of fundamental insight.

1,813 citations

Journal ArticleDOI
TL;DR: In this article, an enhancing mechanism for the ORR based on an increased d−electron vacancy of the thin Pt surface layer caused by underlying alloy was proposed. But this mechanism was only applied to the perchloric acid solution.
Abstract: Electrocatalytic activity of Pt alloys with Ni, Co, and Fe, formed by sputtering, was investigated with regard to the oxygen reduction reaction (ORR) in perchloric acid solution. Hydrodynamic voltammograms with rotated electrodes were used to measure the electrocatalytic activity. Maximum activity was observed at ca. 30, 40, and 50% content of Ni, Co, and Fe, respectively, by which 10, 15, and 20 times larger kinetic current densities than that of pure Pt were attained. X‐ray photoelectron spectroscopy analysis of the surfaces after the reaction indicated that the active surfaces were covered by a few monolayers of Pt. We present an enhancing mechanism for the ORR based on an increased d‐electron vacancy of the thin Pt surface layer caused by underlying alloy. Results of this work contribute in development of new active cathode catalysts for fuel cells used as power sources of electric vehicles, etc. © 1999 The Electrochemical Society. All rights reserved.

1,250 citations

Related Papers (5)