scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Improved performance in TIPS-pentacene field effect transistors using solvent additives

20 Jun 2013-Journal of Materials Chemistry C (The Royal Society of Chemistry)-Vol. 1, Iss: 27, pp 4216-4221
TL;DR: In this article, the effect of solvent additives on the performance of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) field effect transistors (FETs) was investigated.
Abstract: The effect of solvent additives on the performance of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) field effect transistors (FETs) was investigated. Hole mobilities increased from 0.10 cm2 V−1 s−1 for pristine devices to 0.73 or 0.71 cm2 V−1 s−1, when TIPS-pentacene FETs were processed with diphenyl ether (DPE) or chloronaphthalene (CN), respectively. In order to examine the impact of additives on the surface morphology, molecular ordering and crystallinity of TIPS-pentacene, scanning electron microscopy (SEM), X-ray diffraction (XRD) and optical microscopy measurements were carried out. Appropriate amounts of additives were found to induce the formation of well-ordered crystalline domains in TIPS-pentacene films, resulting in enhanced hole transport as well as consistent device performance. Additionally, reduced contact resistances were observed in devices processed with additives compared to neat TIPS-pentacene FET devices. Our findings indicate that the use of solvent additives constitutes a new and effective methodology for the fabrication of OFETs with improved performance.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the formation process of the small-molecule organic semiconductor (OSC) 6,13-bis(triisopropylsilylethynyl) (TIPS)-pentacene during spin-coating in the context of an organic thin film transistor (OTFT) application was investigated.
Abstract: Spin-coating is currently the most widely used solution processing method in organic electronics. Here, we report, for the first time, a direct investigation of the formation process of the small-molecule organic semiconductor (OSC) 6,13-bis(triisopropylsilylethynyl) (TIPS)-pentacene during spin-coating in the context of an organic thin film transistor (OTFT) application. The solution thinning and thin film formation were monitored in situ by optical reflectometry and grazing incidence wide angle X-ray scattering, respectively, both of which were performed during spin-coating. We find that OSC thin film formation is akin to a quenching process, marked by a deposition rate of ∼100 nm s−1, nearly three orders of magnitude faster than drop-casting. This is then followed by a more gradual crystallization and healing step which depends upon the spinning speed. We associate this to further crystallization and healing of defects by residency of the residual solvent trapped inside the kinetically trapped film. The residency time of the trapped solvent is extended to several seconds by slowing the rotational speed of the substrate and is credited with improving the carrier mobility by nearly two orders of magnitude. Based on this insight, we deliberately slow down the solvent evaporation further and increase the carrier mobility by an additional order of magnitude. These results demonstrate how spin-coating conditions can be used as a handle over the crystallinity of organic semiconductors otherwise quenched during initial formation only to recrystallize and heal during extended interaction with the trapped solvent.

63 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported the synthesis and characterization of new alkyl-substituted 1,4-di(thiophen-2-yl)buta-1,3-diyne (R-DTB) donor building blocks, based on the −C≡C-C−C-c−C− conjugative pathway, and their incorporation with thienyl-diketopyrrolopyrylopyryrrole (R′-TDPP) acceptor units into π-conjug
Abstract: We report the synthesis and characterization of new alkyl-substituted 1,4-di(thiophen-2-yl)buta-1,3-diyne (R-DTB) donor building blocks, based on the −C≡C–C≡C– conjugative pathway, and their incorporation with thienyl-diketopyrrolopyrrole (R′-TDPP) acceptor units into π-conjugated PTDPP-DTB polymers (P1–P4). The solubility of the new polymers strongly depends on the DTB and DPP solubilizing (R and R′, respectively) substituents. Thus, solution processable and high molecular weight PDPP-DTB polymers are achieved for P3 (R = n-C12H25, R′ = 2-butyloctyl) and P4 (R = 2-ethylhexyl, R′ = 2-butyloctyl). Systematic studies of P3 and P4 physicochemical properties are carried using optical spectroscopy, cyclic voltammetry, and thermal analysis, revealing characteristic features of the dialkynyl motif. For the first time, optoelectronic devices (OFETs, OPVs) are fabricated with 1,3-butadiyne containing organic semiconductors. OFET hole mobilities and record OPV power conversion efficiencies for acetylenic organic ma...

39 citations

Journal ArticleDOI
TL;DR: In this article, a low-cost fully additive all-air-processed low-temperature PE printing process featuring very low process variations is presented, which is the smallest reported fully additive printing process, and comparable to the best of subtractive processes.
Abstract: Low-cost printed electronics (PE) on flexible substrates necessitates that its printing process embodies only additive steps (vis-a-vis subtractive steps), and processing at low temperature (e.g., $\mu $ ; and in some cases, the primary parameter is threshold voltage $V_{\mathrm{ th}}$ . We present a novel screen-printing low-cost fully additive all-air-processed low-temperature PE printing process featuring very low process variations. In particular, the process variations are ±4.9% $\mu $ and ±0.43 V $V_{\mathrm{ th}}$ . To the best of our knowledge, this is the smallest $\mu $ variations amongst all reported fully additive printing processes, and comparable to the best of subtractive processes. These very low variations are achieved by blade coating the semiconductor layer comprising a polymer-small molecular blend in a dual-solvent system, yielding a precise control of the semiconductor film formation. Further by means of careful layout, the matching between our two printed organic thin-film transistors is markedly improved from 7.2% (arising from ±4.9% $\mu $ and ±0.43 V $V_{\mathrm{ th}}$ variations) to 2.1%—to date, the best reported matching.

37 citations


Cites background from "Improved performance in TIPS-pentac..."

  • ...It is well established [9] that the process variations of...

    [...]

Journal ArticleDOI
TL;DR: In this paper, a multiscale theoretical approach combining nonequilibrium molecular dynamics, first-principles calculations, and kinetic Monte Carlo simulations using charge transfer rates based on the tunneling enabled hopping model, charge-transport properties of TIPS-P under various lattice strains are investigated.
Abstract: The softness and anisotropy of organic semiconductors offer unique properties. Recently, solution-sheared thin-films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-P) with nonequilibrium single-crystal domains have shown much higher charge mobilities than unstrained ones (Nature2011, 480, 504). However, to achieve efficient and targeted modulation of charge transport in organic semiconductors, a detailed microscopic understanding of the structure–property relationship is needed. In this work, motivated by the experimental studies, the relationship between lattice strain, molecular packing, and charge carrier mobility of TIPS-P crystals is elucidated. By employing a multiscale theoretical approach combining nonequilibrium molecular dynamics, first-principles calculations, and kinetic Monte Carlo simulations using charge-transfer rates based on the tunneling enabled hopping model, charge-transport properties of TIPS-P under various lattice strains are investigated. Shear-strained TIPS-P indeed exhibits one-dimensional charge transport, which agrees with the experiments. Furthermore, either shear or tensile strain lead to mobility enhancement, but with strong charge-transport anisotropy. In addition, a combination of shear and tensile strains could not only enhance mobility, but also decrease anisotropy. By combining the shear and tensile strains, almost isotropic charge transport could be realized in TIPS-P crystal with the hole mobility improved by at least one order of magnitude. This approach enables a deep understanding of the effect of lattice strain on charge carrier transport properties in organic semiconductors.

31 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the performance of organic field effect transistors (OFETs) is examined in terms of field effect mobility and on-off current ratio, and the most prominent fabrication techniques are described.
Abstract: Organic field-effect transistors (OFETs) were first described in 1987. Their characteristics have undergone spectacular improvements during the last two or three years. At the same time, several models have been developed to rationalize their operating mode. In this review, we examine the performance of OFETs as revealed by recently published data, mainly in terms of field-effect mobility and on–off current ratio. We compare the various compounds that have been used as the active component, and describe the most prominent fabrication techniques. Finally, we analyze the charge transport mechanisms in organic solids, and the resulting models of OFETs.

2,380 citations

Journal ArticleDOI
21 Jul 2011-Nature
TL;DR: It is shown that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid–air interfaces.
Abstract: Printing electronic devices using semiconducting 'ink' is seen as a promising route to cheap, large-area and flexible electronics, but the performance of such devices suffers from the relatively poor crystallinity of the printed material. Hiromi Minemawari and colleagues have developed an inkjet-based printing technique involving controlled mixing on a surface of two solutions — the semiconductor (C8-BTBT) in its solvent and a liquid in which the semiconductor is insoluble. The products of this antisolvent crystallization technique are thin semiconductor films with exceptionally high and uniform crystallinity. The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science1. Whether based on inorganic2,3,4,5 or organic6,7,8 materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. ‘Printed electronics’ is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials9,10,11. However, because of the strong self-organizing tendency of the deposited materials12,13, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization14 with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid–air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4 cm2 V−1 s−1. This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.

1,505 citations

Journal ArticleDOI
TL;DR: The preparation of two functionalized pentacene derivatives, and the effect of this functionalization on both the solid-state ordering and the electronic properties of the resulting crystals is reported.
Abstract: Molecular order has proven to be a significant factor in the performance of devices based on organic semiconductors. Recent studies involving solubilized versus unsubstituted thiophene oligomers have demonstrated that modifications which increase orbital overlap in the solid state can improve device performance by more than an order of magnitude. 1 Similar studies on pentacene, a compound which has already demonstrated remarkable potential for device applications, 2 have also focused on maximizing orbital overlap by inducing order in films. 3 However, these pentacene studies have thus far relied on substrate modification, rather than on pentacene functionalization, 4 to achieve the desired goals. We report here the preparation of two functionalized pentacene derivatives, and the effect of this functionalization on both the solid-state ordering and the electronic properties of the resulting crystals. Our goal for a functionalized pentacene was two-fold: First, the substituents should impart solubility to the acene, to simplify purification and processing. Second, the substituents should induce some capability for self-assembly of the aromatic moieties into ﷿-stacked arrays to enhance intermolecular orbital overlap. We anticipated that both of these goals could be accomplished by exploiting a rigid spacer to hold the necessarily bulky solubilizing groups well away from the aromatic core, allowing the closest possible contact between the aromatic rings. 5 Our initial targets were the bis(triisopropylsilylethynyl)pentacenes 1 and 2. Both of these compounds are easily prepared in near quantitative yield in a one-pot reaction from 6,13-pentacenequinone and 5,14pentacenequinone, respectively. 6

1,211 citations

Journal ArticleDOI
22 Dec 2011-Nature
TL;DR: A solution-processing technique in which lattice strain is used to increase charge carrier mobilities by introducing greater electron orbital overlap between the component molecules should aid the development of high-performance, low-cost organic semiconducting devices.
Abstract: A solution-processing method known as solution shearing is used to introduce lattice strain to organic semiconductors, thus improving charge carrier mobility. Solution-processed organic semiconductors show great promise for application in cheap and flexible electronic devices, but generally suffer from greatly reduced electronic performance — most notably charge-carrier mobilities — compared with their inorganic counterparts. Borrowing a trick from the inorganic semiconductor community, Giri et al. show how the introduction of strain into an organic semiconductor, through a simple solution-processing technique, modifies the molecular packing within the material and hence its electronic performance. For one material studied, the preparation of a strained structure is shown to more than double the charge-carrier mobility. Circuits based on organic semiconductors are being actively explored for flexible, transparent and low-cost electronic applications1,2,3,4,5. But to realize such applications, the charge carrier mobilities of solution-processed organic semiconductors must be improved. For inorganic semiconductors, a general method of increasing charge carrier mobility is to introduce strain within the crystal lattice6. Here we describe a solution-processing technique for organic semiconductors in which lattice strain is used to increase charge carrier mobilities by introducing greater electron orbital overlap between the component molecules. For organic semiconductors, the spacing between cofacially stacked, conjugated backbones (the π–π stacking distance) greatly influences electron orbital overlap and therefore mobility7. Using our method to incrementally introduce lattice strain, we alter the π–π stacking distance of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) from 3.33 A to 3.08 A. We believe that 3.08 A is the shortest π–π stacking distance that has been achieved in an organic semiconductor crystal lattice (although a π–π distance of 3.04 A has been achieved through intramolecular bonding8,9,10). The positive charge carrier (hole) mobility in TIPS-pentacene transistors increased from 0.8 cm2 V−1 s−1 for unstrained films to a high mobility of 4.6 cm2 V−1 s−1 for a strained film. Using solution processing to modify molecular packing through lattice strain should aid the development of high-performance, low-cost organic semiconducting devices.

965 citations

Journal ArticleDOI
TL;DR: It is concluded that DIO selectively dissolves PC(71)BM aggregates, allowing their intercalation into PTB7 domains, thereby optimizing both the domain size and the PTB 7-PC( 71)BM interface.
Abstract: Processing additives are used in organic photovoltaic systems to optimize the active layer film morphology. However, the actual mechanism is not well understood. Using X-ray scattering techniques, we analyze the effects of an additive diiodooctane (DIO) on the aggregation of a high-efficiency donor polymer PTB7 and an acceptor molecule PC71BM under solar cell processing conditions. We conclude that DIO selectively dissolves PC71BM aggregates, allowing their intercalation into PTB7 domains, thereby optimizing both the domain size and the PTB7–PC71BM interface.

515 citations

Related Papers (5)