scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues

TL;DR: In this article, the authors presented a new dataset of formaldehyde vertical columns retrieved from observations of GOME-2 on board the EUMETSAT MetOp-A platform between 2007 and 2011.
Abstract: . We present a new dataset of formaldehyde vertical columns retrieved from observations of GOME-2 on board the EUMETSAT MetOp-A platform between 2007 and 2011. The new retrieval scheme, which has been optimised for GOME-2, includes a two-step fitting procedure that strongly reduces the impact of spectral interferences between H2CO and BrO, and a modified DOAS approach that better handles ozone absorption effects at moderately low sun elevations. Owing to these new features, the noise in the H2CO slant columns is reduced by up to 40% in comparison to baseline retrieval settings used operationally. Also, the previously reported underestimation of the H2CO columns in tropical and mid-latitude regions has been largely eliminated, improving the agreement with coincident SCIAMACHY observations. To compensate for the drift of the GOME-2 slit function and to mitigate the instrumental degradation effects on H2CO retrievals, an asymmetric Gaussian line-shape is fitted during the irradiance calibration. Additionally, external parameters used in the tropospheric air mass factor computation (surface reflectances, cloud parameters and a priori profile shapes of H2CO) have been updated using most recent databases. Similar updates were also applied to the historical datasets of GOME and SCIAMACHY, leading to the generation of a consistent multi-mission H2CO data record covering the time period from 1997 until 2011. Comparing the resulting time series of monthly averaged H2CO vertical columns in 12 large regions worldwide, the correlation coefficient between SCIAMACHY and GOME-2 columns is generally higher than 0.8 in the overlap period, and linear regression slopes differ by less than 10% from unity in most of the regions. In comparison to SCIAMACHY, the largely improved spatial sampling of GOME-2 allows for a better characterisation of formaldehyde distribution at the regional scale and/or at shorter timescales, leading to a better identification of the emission sources of non-methane volatile organic compounds.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors analyzed spatial and temporal variations in surface ozone sensitivity by analyzing the ratio of formaldehyde (HCHO, a marker of VOCs) to nitrogen dioxide (NO2), a metric known as the formaldehyde nitrogen ratio (FNR).
Abstract: Surface ozone (O3) air pollution in populated regions has been attributed to emissions of nitrogen oxides (NO + NO2 = NOx) and reactive volatile organic compounds (VOCs). These constituents react with hydrogen oxide radicals (OH + HO2 = HOx) in the presence of sunlight and heat to produce O3. The question of whether to reduce NOx emissions, VOC emissions, or both is complicated by spatially and temporally heterogeneous ozone-NOx-VOC sensitivity. This study characterizes spatial and temporal variations in O3 sensitivity by analyzing the ratio of formaldehyde (HCHO, a marker of VOCs) to nitrogen dioxide (NO2), a metric known as the formaldehyde nitrogen ratio (FNR). Level 3 gridded retrievals from the Ozone Monitoring Instrument (OMI) aboard the NASA Aura satellite were used to calculate FNR, with our analysis focusing on China. Based on previous studies, we take FNR 2.0 as indicating NOx-limited regime, and FNR between 1.0 and 2.0 as indicating transitional regime (where either NOx reductions or VOC reductions would be expected to reduce O3). We find that the transitional regime is widespread over the North China Plain (NCP), the Yangtze River Delta, and the Pearl River Delta during the ozone season (defined as having near-surface air temperatures >20°C at the early afternoon OMI overpass time). Outside of these regions, the NOx-limited regime is dominant. Because HCHO and NO2 have distinct seasonal patterns, FNR also has a pronounced seasonality, consistent with the seasonal cycle of surface O3. Examining trends from 2005 to 2013 indicates rapid growth in NO2, especially over less-developed areas where O3 photochemistry is NOx limited. Over this time period, HCHO decreased in southern China, where VOC emissions are dominated by biogenic sources, but increased slightly over the NCP, where VOC emissions are dominated by anthropogenic sources. A linear regression approach suggests that most of China (70% of grid cells) will be characterized by a transitional regime during the O3 season by 2030. However, in megacities such as Guangzhou, Shanghai, and Beijing, NO2 has decreased such that the chemical regime has shifted from VOC limited in 2005 to transitional in 2013.

239 citations

Journal ArticleDOI
TL;DR: TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021, and it will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy as mentioned in this paper.
Abstract: TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide),water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.

226 citations

Journal ArticleDOI
TL;DR: The GEOS-Chem global chemical transport model is used to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument and it is found that FNR in the model surface layer is a robust predictor of the simulated near-surface O3 production regime.
Abstract: Determining effective strategies for mitigating surface ozone (O3) pollution requires knowledge of the relative ambient concentrations of its precursors, NOx, and VOCs. The space-based tropospheric column ratio of formaldehyde to NO2 (FNR) has been used as an indicator to identify NOx-limited versus NOx-saturated O3 formation regimes. Quantitative use of this indicator ratio is subject to three major uncertainties: (1) the split between NOx-limited and NOx-saturated conditions may shift in space and time, (2) the ratio of the vertically integrated column may not represent the near-surface environment, and (3) satellite products contain errors. We use the GEOS-Chem global chemical transport model to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument over three northern midlatitude source regions. We find that FNR in the model surface layer is a robust predictor of the simulated near-surface O3 production regime. Extending this surface-based predictor to a column-based FNR requires accounting for differences in the HCHO and NO2 vertical profiles. We compare four combinations of two OMI HCHO and NO2 retrievals with modeled FNR. The spatial and temporal correlations between the modeled and satellite-derived FNR vary with the choice of NO2 product, while the mean offset depends on the choice of HCHO product. Space-based FNR indicates that the spring transition to NOx-limited regimes has shifted at least a month earlier over major cities (e.g., New York, London, and Seoul) between 2005 and 2015. This increase in NOx sensitivity implies that NOx emission controls will improve O3 air quality more now than it would have a decade ago.

183 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the new version (v14) of the BIRA-IASB algorithm for the retrieval of formaldehyde (H2CO) columns from spaceborne UV-visible sensors.
Abstract: . We present the new version (v14) of the BIRA-IASB algorithm for the retrieval of formaldehyde (H2CO) columns from spaceborne UV–visible sensors. Applied to OMI measurements from Aura and to GOME-2 measurements from MetOp-A and MetOp-B, this algorithm is used to produce global distributions of H2CO representative of mid-morning and early afternoon conditions. Its main features include (1) a new iterative DOAS scheme involving three fitting intervals to better account for the O2–O2 absorption, (2) the use of earthshine radiances averaged in the equatorial Pacific as reference spectra, and (3) a destriping correction and background normalisation resolved in the across-swath position. For the air mass factor calculation, a priori vertical profiles calculated by the IMAGES chemistry transport model at 09:30 and 13:30 LT are used. Although the resulting GOME-2 and OMI H2CO vertical columns are found to be highly correlated, some systematic differences are observed. Afternoon columns are generally larger than morning ones, especially in mid-latitude regions. In contrast, over tropical rainforests, morning H2CO columns significantly exceed those observed in the afternoon. These differences are discussed in terms of the H2CO column variation between mid-morning and early afternoon, using ground-based MAX-DOAS measurements available from seven stations in Europe, China and Africa. Validation results confirm the capacity of the combined satellite measurements to resolve diurnal variations in H2CO columns. Furthermore, vertical profiles derived from MAX-DOAS measurements in the Beijing area and in Bujumbura are used for a more detailed validation exercise. In both regions, we find an agreement better than 15 % when MAX-DOAS profiles are used as a priori for the satellite retrievals. Finally, regional trends in H2CO columns are estimated for the 2004–2014 period using SCIAMACHY and GOME-2 data for morning conditions, and OMI for early afternoon conditions. Consistent features are observed, such as an increase of the columns in India and central–eastern China, and a decrease in the eastern US and Europe. We find that the higher horizontal resolution of OMI combined with a better sampling and a more favourable illumination at midday allow for more significant trend estimates, especially over Europe and North America. Importantly, in some parts of the Amazonian forest, we observe with both time series a significant downward trend in H2CO columns, spatially correlated with areas affected by deforestation.

161 citations

Journal ArticleDOI
TL;DR: The Smithsonian Astrophysical Observatory (SAO) formaldehyde (H2CO) retrieval algorithm for the Ozone Monitoring Instrument (OMI) is the operational retrieval for NASA OMI H2CO.
Abstract: We present and discuss the Smithsonian Astrophysical Observatory (SAO) formaldehyde (H2CO) retrieval algorithm for the Ozone Monitoring Instrument (OMI) which is the operational retrieval for NASA OMI H2CO The version of the algorithm described here includes relevant changes with respect to the operational one, including differences in the reference spectra for H2CO, the fit of O2–O2 collisional complex, updates in the high-resolution solar reference spectrum, the use of a model reference sector over the remote Pacific Ocean to normalize the retrievals, an updated air mass factor (AMF) calculation scheme, and the inclusion of scattering weights and vertical H2CO profile in the level 2 products The setup of the retrieval is discussed in detail We compare the results of the updated retrieval with the results from the previous SAO H2CO retrieval The improvement in the slant column fit increases the temporal stability of the retrieval and slightly reduces the noise The change in the AMF calculation has increased the AMFs by 20%, mainly due to the consideration of the radiative cloud fraction Typical values for retrieved vertical columns are between 4 × 1015 and 4 × 1016 molecules cm−2, with typical fitting uncertainties ranging between 45 and 100% In high-concentration regions the errors are usually reduced to 30% The detection limit is estimated at 1 × 1016 molecules cm−2

146 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a set of emission factors for a large variety of species emitted from biomass fires, where data were not available, they have proposed estimates based on appropriate extrapolation techniques.
Abstract: A large body of information on emissions from the various types of biomass burning has been accumulated over the past decade, to a large extent as a result of International Geosphere-Biosphere Programme/International Global Atmospheric Chemistry research activities. Yet this information has not been readily accessible to the atmospheric chemistry community because it was scattered over a large number of publications and reported in numerous different units and reference systems. We have critically evaluated the presently available data and integrated these into a consistent format. On the basis of this analysis we present a set of emission factors for a large variety of species emitted from biomass fires. Where data were not available, we have proposed estimates based on appropriate extrapolation techniques. We have derived global estimates of pyrogenic emissions for important species emitted by the various types of biomass burning and compared our estimates with results from inverse modeling studies.

3,556 citations


"Improved retrieval of global tropos..." refers methods in this paper

  • ..., 2010) by applying updated emission factors (2007) from Andreae and Merlet (2001). The a priori anthropogenic emissions are obtained from the RETRO database for the year 2000 (Schultz et al....

    [...]

  • ...The a priori pyrogenic emissions are provided by the Global Fire Emis- sion Database (GFEDv3, van der Werf et al., 2010) by ap- plying updated emission factors (2007) from Andreae and Merlet (2001)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step.
Abstract: . New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997–2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997–2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 Pg C year−1 with significant interannual variability during 1997–2001 (2.8 Pg C year−1 in 1998 and 1.6 Pg C year−1 in 2001). Globally, emissions during 2002–2007 were relatively constant (around 2.1 Pg C year−1) before declining in 2008 (1.7 Pg C year−1) and 2009 (1.5 Pg C year−1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002–2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001–2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 Pg C year−1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series.

2,494 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a new emission inventory for Asia (Regional Emission inventory in ASia (REAS) Version 1.1) for the period 1980-2020.
Abstract: . We developed a new emission inventory for Asia (Regional Emission inventory in ASia (REAS) Version 1.1) for the period 1980–2020. REAS is the first inventory to integrate historical, present, and future emissions in Asia on the basis of a consistent methodology. We present here emissions in 2000, historical emissions for 1980–2003, and projected emissions for 2010 and 2020 of SO2, NOx, CO, NMVOC, black carbon (BC), and organic carbon (OC) from fuel combustion and industrial sources. Total energy consumption in Asia more than doubled between 1980 and 2003, causing a rapid growth in Asian emissions, by 28% for BC, 30% for OC, 64% for CO, 108% for NMVOC, 119% for SO2, and 176% for NOx. In particular, Chinese NOx emissions showed a marked increase of 280% over 1980 levels, and growth in emissions since 2000 has been extremely high. These increases in China were mainly caused by increases in coal combustion in the power plants and industrial sectors. NMVOC emissions also rapidly increased because of growth in the use of automobiles, solvents, and paints. By contrast, BC, OC, and CO emissions in China showed decreasing trends from 1996 to 2000 because of a reduction in the use of biofuels and coal in the domestic and industry sectors. However, since 2000, Chinese emissions of these species have begun to increase. Thus, the emissions of air pollutants in Asian countries (especially China) showed large temporal variations from 1980–2003. Future emissions in 2010 and 2020 in Asian countries were projected by emission scenarios and from emissions in 2000. For China, we developed three emission scenarios: PSC (policy success case), REF (reference case), and PFC (policy failure case). In the 2020 REF scenario, Asian total emissions of SO2, NOx, and NMVOC were projected to increase substantially by 22%, 44%, and 99%, respectively, over 2000 levels. The 2020 REF scenario showed a modest increase in CO (12%), a lesser increase in BC (1%), and a slight decrease in OC (−5%) compared with 2000 levels. However, it should be noted that Asian total emissions are strongly influenced by the emission scenarios for China.

1,388 citations

Journal ArticleDOI
TL;DR: In this paper, an update to the previous protocol is presented, which has been used to define degradation schemes for 107 non-aromatic VOC as part of version 3 of the Master Chemical Mechanism (MCM v3).
Abstract: . Kinetic and mechanistic data relevant to the tropospheric degradation of volatile organic compounds (VOC), and the production of secondary pollutants, have previously been used to define a protocol which underpinned the construction of a near-explicit Master Chemical Mechanism. In this paper, an update to the previous protocol is presented, which has been used to define degradation schemes for 107 non-aromatic VOC as part of version 3 of the Master Chemical Mechanism (MCM v3). The treatment of 18 aromatic VOC is described in a companion paper. The protocol is divided into a series of subsections describing initiation reactions, the reactions of the radical intermediates and the further degradation of first and subsequent generation products. Emphasis is placed on updating the previous information, and outlining the methodology which is specifically applicable to VOC not considered previously (e.g. a - and b -pinene). The present protocol aims to take into consideration work available in the open literature up to the beginning of 2001, and some other studies known by the authors which were under review at the time. Application of MCM v3 in appropriate box models indicates that the representation of isoprene degradation provides a good description of the speciated distribution of oxygenated organic products observed in reported field studies where isoprene was the dominant emitted hydrocarbon, and that the a -pinene degradation chemistry provides a good description of the time dependence of key gas phase species in a -pinene/NOX photo-oxidation experiments carried out in the European Photoreactor (EUPHORE). Photochemical Ozone Creation Potentials (POCP) have been calculated for the 106 non-aromatic non-methane VOC in MCM v3 for idealised conditions appropriate to north-west Europe, using a photochemical trajectory model. The POCP values provide a measure of the relative ozone forming abilities of the VOC. Where applicable, the values are compared with those calculated with previous versions of the MCM.

1,274 citations

Related Papers (5)