scispace - formally typeset
Search or ask a question
Posted Content

Improved Training of Wasserstein GANs

TL;DR: This work proposes an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input, which performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning.
Abstract: Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only low-quality samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models over discrete data. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms.
Citations
More filters
Posted Content
TL;DR: In this article, a two time-scale update rule (TTUR) was proposed for training GANs with stochastic gradient descent on arbitrary GAN loss functions, which has an individual learning rate for both the discriminator and the generator.
Abstract: Generative Adversarial Networks (GANs) excel at creating realistic images with complex models for which maximum likelihood is infeasible. However, the convergence of GAN training has still not been proved. We propose a two time-scale update rule (TTUR) for training GANs with stochastic gradient descent on arbitrary GAN loss functions. TTUR has an individual learning rate for both the discriminator and the generator. Using the theory of stochastic approximation, we prove that the TTUR converges under mild assumptions to a stationary local Nash equilibrium. The convergence carries over to the popular Adam optimization, for which we prove that it follows the dynamics of a heavy ball with friction and thus prefers flat minima in the objective landscape. For the evaluation of the performance of GANs at image generation, we introduce the "Frechet Inception Distance" (FID) which captures the similarity of generated images to real ones better than the Inception Score. In experiments, TTUR improves learning for DCGANs and Improved Wasserstein GANs (WGAN-GP) outperforming conventional GAN training on CelebA, CIFAR-10, SVHN, LSUN Bedrooms, and the One Billion Word Benchmark.

5,354 citations

Journal ArticleDOI
TL;DR: This article provides a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields and proposes a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNS, convolutional GNN’s, graph autoencoders, and spatial–temporal Gnns.
Abstract: Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications, where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on the existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this article, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNs, convolutional GNNs, graph autoencoders, and spatial–temporal GNNs. We further discuss the applications of GNNs across various domains and summarize the open-source codes, benchmark data sets, and model evaluation of GNNs. Finally, we propose potential research directions in this rapidly growing field.

4,584 citations

Proceedings Article
15 Feb 2018
TL;DR: In this paper, the authors proposed a novel weight normalization technique called spectral normalization to stabilize the training of the discriminator, which is computationally light and easy to incorporate into existing implementations.
Abstract: One of the challenges in the study of generative adversarial networks is the instability of its training. In this paper, we propose a novel weight normalization technique called spectral normalization to stabilize the training of the discriminator. Our new normalization technique is computationally light and easy to incorporate into existing implementations. We tested the efficacy of spectral normalization on CIFAR10, STL-10, and ILSVRC2012 dataset, and we experimentally confirmed that spectrally normalized GANs (SN-GANs) is capable of generating images of better or equal quality relative to the previous training stabilization techniques.

2,640 citations

Posted Content
TL;DR: This work redesigns the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images, and thereby redefines the state of the art in unconditional image modeling.
Abstract: The style-based GAN architecture (StyleGAN) yields state-of-the-art results in data-driven unconditional generative image modeling. We expose and analyze several of its characteristic artifacts, and propose changes in both model architecture and training methods to address them. In particular, we redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images. In addition to improving image quality, this path length regularizer yields the additional benefit that the generator becomes significantly easier to invert. This makes it possible to reliably attribute a generated image to a particular network. We furthermore visualize how well the generator utilizes its output resolution, and identify a capacity problem, motivating us to train larger models for additional quality improvements. Overall, our improved model redefines the state of the art in unconditional image modeling, both in terms of existing distribution quality metrics as well as perceived image quality.

2,411 citations


Cites background from "Improved Training of Wasserstein GA..."

  • ...Skip connections [29, 19], residual networks [15, 14, 26], and hierarchical methods [6, 41, 42] have proven highly successful also in the context of generative methods....

    [...]

Book ChapterDOI
08 Sep 2018
TL;DR: ESRGAN as mentioned in this paper improves the perceptual loss by using the features before activation, which could provide stronger supervision for brightness consistency and texture recovery, and won the first place in the PIRM2018-SR Challenge (region 3).
Abstract: The Super-Resolution Generative Adversarial Network (SRGAN) is a seminal work that is capable of generating realistic textures during single image super-resolution. However, the hallucinated details are often accompanied with unpleasant artifacts. To further enhance the visual quality, we thoroughly study three key components of SRGAN – network architecture, adversarial loss and perceptual loss, and improve each of them to derive an Enhanced SRGAN (ESRGAN). In particular, we introduce the Residual-in-Residual Dense Block (RRDB) without batch normalization as the basic network building unit. Moreover, we borrow the idea from relativistic GAN to let the discriminator predict relative realness instead of the absolute value. Finally, we improve the perceptual loss by using the features before activation, which could provide stronger supervision for brightness consistency and texture recovery. Benefiting from these improvements, the proposed ESRGAN achieves consistently better visual quality with more realistic and natural textures than SRGAN and won the first place in the PIRM2018-SR Challenge (region 3) with the best perceptual index. The code is available at https://github.com/xinntao/ESRGAN.

2,298 citations

References
More filters
Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Journal ArticleDOI
08 Dec 2014
TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Abstract: We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to ½ everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

38,211 citations


"Improved Training of Wasserstein GA..." refers background in this paper

  • ...In practice, [9] advocates that the generator be instead trained to maximize E x̃⇠P...

    [...]

  • ...[9], but doing so often leads to vanishing gradients as the discriminator saturates....

    [...]

  • ...† 1 Introduction Generative Adversarial Networks (GANs) [9] are a powerful class of generative models that cast generative modeling as a game between two networks: a generator network produces synthetic data given some noise source and a discriminator network discriminates between the generator’s output and true data....

    [...]

Posted Content
TL;DR: In this article, the adaptive estimates of lower-order moments are used for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimate of lowerorder moments.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

23,486 citations

Dissertation
01 Jan 2009
TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Abstract: In this work we describe how to train a multi-layer generative model of natural images. We use a dataset of millions of tiny colour images, described in the next section. This has been attempted by several groups but without success. The models on which we focus are RBMs (Restricted Boltzmann Machines) and DBNs (Deep Belief Networks). These models learn interesting-looking filters, which we show are more useful to a classifier than the raw pixels. We train the classifier on a labeled subset that we have collected and call the CIFAR-10 dataset.

15,005 citations

Journal ArticleDOI
TL;DR: This article presents a general class of associative reinforcement learning algorithms for connectionist networks containing stochastic units that are shown to make weight adjustments in a direction that lies along the gradient of expected reinforcement in both immediate-reinforcement tasks and certain limited forms of delayed-reInforcement tasks, and they do this without explicitly computing gradient estimates.
Abstract: This article presents a general class of associative reinforcement learning algorithms for connectionist networks containing stochastic units. These algorithms, called REINFORCE algorithms, are shown to make weight adjustments in a direction that lies along the gradient of expected reinforcement in both immediate-reinforcement tasks and certain limited forms of delayed-reinforcement tasks, and they do this without explicitly computing gradient estimates or even storing information from which such estimates could be computed. Specific examples of such algorithms are presented, some of which bear a close relationship to certain existing algorithms while others are novel but potentially interesting in their own right. Also given are results that show how such algorithms can be naturally integrated with backpropagation. We close with a brief discussion of a number of additional issues surrounding the use of such algorithms, including what is known about their limiting behaviors as well as further considerations that might be used to help develop similar but potentially more powerful reinforcement learning algorithms.

7,930 citations


"Improved Training of Wasserstein GA..." refers methods in this paper

  • ...Other attempts at language modeling with GANs [31, 14, 29, 5, 15, 10] typically use discrete models and gradient estimators [27, 12, 16]....

    [...]