scispace - formally typeset
Search or ask a question

Improved two-equation k-omega turbulence models for aerodynamic flows

01 Oct 1992-Vol. 93, pp 22809
TL;DR: In this article, two new versions of the k-omega two-equation turbulence model are presented, the baseline model and the Shear-Stress Transport model, which is based on the BSL model, but has the additional ability to account for the transport of the principal shear stress in adverse pressure gradient boundary layers.
Abstract: Two new versions of the k-omega two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original k-omega model of Wilcox, but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner 50 percent of the boundary-layer but changes gradually to the high Reynolds number Jones-Launder k-epsilon model (in a k-omega formulation) towards the boundary-layer edge. The new model is also virtually identical to the Jones-Lauder model for free shear layers. The second version of the model is called Shear-Stress Transport (SST) model. It is based on the BSL model, but has the additional ability to account for the transport of the principal shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear stress is proportional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different flowfields. The results of the BSL model are similar to those of the original k-omega model, but without the undesirable freestream dependency. The predictions of the SST model are also independent of the freestream values and show excellent agreement with experimental data for adverse pressure gradient boundary-layer flows.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a CFD strategy is proposed that combines delayed detached-eddy simulation (DDES) with an improved RANS-LES hybrid model aimed at wall modelling in LES (WMLES).

1,543 citations

Journal ArticleDOI
TL;DR: In this article, a reformulated version of the author's k-ω model of turbulence has been presented, which has been applied to both boundary layers and free shear flows and has little sensitivity to finite freestream boundary conditions on turbulence properties.
Abstract: This paper presents a reformulated version of the author'sk-ω model of turbulence. Revisions include the addition of just one new closure coefficient and an adjustment to the dependence of eddy viscosity on turbulence properties. The result is a significantly improved model that applies to both boundary layers and free shear flows and that has very little sensitivity to finite freestream boundary conditions on turbulence properties. The improvements to the k-ω model facilitate a significant expansion of its range of applicability. The new model, like preceding versions, provides accurate solutions for mildly separated flows and simple geometries such as that of a backward-facing step. The model's improvement over earlier versions lies in its accuracy for even more complicated separated flows. This paper demonstrates the enhanced capability for supersonic flow into compression corners and a hypersonic shock-wave/ boundary-layer interaction. The excellent agreement is achieved without introducing any compressibility modifications to the turbulence model.

882 citations

Book ChapterDOI
TL;DR: In this article, a review of recent impinging jet research publications identified a series of engineering research tasks that are important for improving the design and resulting performance of impinging jets: (1) clearly resolve the physical mechanisms by which multiple peaks occur in the transfer coefficient profiles, and clarify which mechanism(s) dominate in various geometries and Reynolds number regimes.
Abstract: Publisher Summary This chapter presents a discussion on jet impingement heat transfer. The chapter describes the applications and physics of the flow and heat transfer phenomena, available empirical correlations and values they predict, and numerical simulation techniques and results of impinging jet devices for heat transfer. The relative strengths and drawbacks of the Reynolds stress model, algebraic stress models, shear stress transport, and v 2 f turbulence models for impinging jet flow and heat transfer are compared in the chapter. The chapter provides select model equations as well as quantitative assessments of model errors and judgments of model suitability. The review of recent impinging jet research publications identified a series of engineering research tasks that are important for improving the design and resulting performance of impinging jets: (1) clearly resolve the physical mechanisms by which multiple peaks occur in the transfer coefficient profiles, and clarify which mechanism(s) dominate in various geometries and Reynolds number regimes, (2) develop a turbulence model, and associated wall treatment if necessary, that reliably and efficiently provides time-averaged transfer coefficients, (3) develop alternate nozzle and installation geometries that provide higher efficiency, meaning improved Nu profiles at either a set flow or set blower power, and (4) further explore the effects of jet interference in jet array geometries, both experimentally and numerically. This includes improved design of exit pathways for spent flow in array installations.

693 citations

01 Apr 1997
TL;DR: In this paper, the authors provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results, including free shear flows, boundary layer flows, and axisymmetric shockwave/boundary layer interaction.
Abstract: The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.

607 citations

Journal ArticleDOI
TL;DR: The Spalart-Allmaras (SA) one-equation turbulence model as mentioned in this paper was developed for aerodynamic flow simulations and was shown to be quite competitive with advanced nonlinear and Reynolds-stress models and to be much more accurate than the original SA model.
Abstract: Aunie edapproachtosystem-rotationandstreamline-curvatureeffectsintheframeworkofsimpleeddy-viscosity turbulence models is exercised in a range of rotating and curved channel e ows. The Spalart ‐Allmaras (SA) oneequation turbulence model (Spalart, P. R., and Allmaras, S. R., “ A One-Equation Turbulence Model for Aerodynamic Flows,” AIAAPaper 92-0439, 1992 )modie ed in thismanner is shown to bequitecompetitivewith advanced nonlinear and Reynolds-stress models and to be much more accurate than the original SA model and other eddyviscosity models that are widely used for industrial e ow computations. The new term adds about 20% to the computing cost, but does not degrade convergence.

510 citations

References
More filters