scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Improving direct-mapped cache performance by the addition of a small fully-associative cache and prefetch buffers

01 May 1990-Vol. 18, pp 364-373
TL;DR: In this article, a hardware technique to improve the performance of caches is presented, where a small fully-associative cache between a cache and its refill path is used to place prefetched data and not in the cache.
Abstract: Projections of computer technology forecast processors with peak performance of 1,000 MIPS in the relatively near future. These processors could easily lose half or more of their performance in the memory hierarchy if the hierarchy design is based on conventional caching techniques. This paper presents hardware techniques to improve the performance of caches.Miss caching places a small fully-associative cache between a cache and its refill path. Misses in the cache that hit in the miss cache have only a one cycle miss penalty, as opposed to a many cycle miss penalty without the miss cache. Small miss caches of 2 to 5 entries are shown to be very effective in removing mapping conflict misses in first-level direct-mapped caches.Victim caching is an improvement to miss caching that loads the small fully-associative cache with the victim of a miss and not the requested line. Small victim caches of 1 to 5 entries are even more effective at removing conflict misses than miss caching.Stream buffers prefetch cache lines starting at a cache miss address. The prefetched data is placed in the buffer and not in the cache. Stream buffers are useful in removing capacity and compulsory cache misses, as well as some instruction cache conflict misses. Stream buffers are more effective than previously investigated prefetch techniques at using the next slower level in the memory hierarchy when it is pipelined. An extension to the basic stream buffer, called multi-way stream buffers, is introduced. Multi-way stream buffers are useful for prefetching along multiple intertwined data reference streams.Together, victim caches and stream buffers reduce the miss rate of the first level in the cache hierarchy by a factor of two to three on a set of six large benchmarks.

Content maybe subject to copyright    Report

Citations
More filters
Patent
30 May 1996
TL;DR: A history-based prefetch cache as mentioned in this paper is a prefetch target buffer which receives inputs from a time queue and a cache and determines if an event is present in the cache.
Abstract: A history-based prefetch cache which includes a time queue. The time queue correlates past events with cache misses in a microprocessor. The time queue is set to N cycles, N being a predetermined, arbitrary or programmable amount. The prefetch cache is a prefetch target buffer which receives inputs from a time queue and a cache and determines if an event is present in the cache. If an address is not present in the cache it is prefetched based on past events and inserted into the prefetch target buffer so that the microprocessor will not miss it the next time.

35 citations

Patent
17 May 2002
TL;DR: In this article, the authors propose a method that avoids cache flooding when handling sequential I/O request streams in storage subsystem caches by making the blocks read from the disk array, that are part of a sequential IO request stream, minimize the evictions of potentially useful data blocks from the cache.
Abstract: A method that avoids cache flooding when handling sequential I/O request streams in storage subsystem caches. Both on-demand and prefetched data are addressed. A mechanism is provided that makes the blocks read from the disk array, that are part of a sequential I/O request stream, minimize the evictions of potentially useful data blocks from the cache, thus avoiding the flooding of the cache by stale data.

35 citations

Journal Article
TL;DR: This work proposes a new instruction prefetching technique whereby the hardware and software cooperate to hide the latency of nonsequential accesses and implements a novel compiler algorithm which automatically inserts instruction-prefetch the targets of control transfers far enough in advance.
Abstract: Instruction cache miss latency is becoming an increasingly important performance bottleneck, especially for commercial applications. Although instruction prefetching is an attractive technique for tolerating this latency, we find that existing prefetching schemes are insufficient for modern superscalar processors, since they fail to issue prefetches early enough (particularly for nonsequential accesses). To overcome these limitations, we propose a new instruction prefetching technique whereby the hardware and software cooperate to hide the latency as follows. The hardware performs aggressive sequential prefetching combined with a novel prefetch filtering mechanism to allow it to get far ahead without polluting the cache. To hide the latency of nonsequential accesses, we propose and implement a novel compiler algorithm which automatically inserts instruction-prefetch instructions into the executable to prefetch the targets of control transfers far enough in advance. Our experimental results demonstrate that this new approach hides 50% or more of the latency remaining with the best previous techniques, while at the same time reduces the number of useless prefetches by a factor of six. We find that both the prefetch filtering and compiler-inserted prefetching components of our design are essential and complementary, and that the compiler can limit the code expansion to only 9% on average. In addition, we show that the performance of our technique can be further increased by using profiling information to help reduce cache conflicts and unnecessary prefetches. From an architectural perspective, these performance advantages are sustained over a range of common miss latencies and bandwidth. Finally, our technique is cost effective as well, since it delivers performance comparable to (or even better than) that of larger caches, but requires a much smaller hardware budget.

35 citations

Journal ArticleDOI
TL;DR: The findings on hiding memory latency using the direct memory access (DMA) mode, which is present in all modern systems, combined with a software prefetch mechanism, and a customized on-chip memory hierarchy mapping are presented.
Abstract: Memory latency has always been a major issue in embedded systems that execute memory-intensive applications. This is even more true as the gap between processor and memory speed continues to grow. Hardware and software prefetching have been shown to be effective in tolerating the large memory latencies inherit in large off-chip memories; however, both types of prefetching have their shortcomings. Hardware schemes are more complex and require extra circuitry to compute data access strides, while software schemes generate prefetch instructions, which if not computed carefully may hamper performance. On the other hand, some applications domains (such as multimedia) have a uniform and known a priori memory access pattern, that if exploited, could yield significant application performance improvement. With this characteristic in mind, we present our findings on hiding memory latency using the direct memory access (DMA) mode, which is present in all modern systems, combined with a software prefetch mechanism, and a customized on-chip memory hierarchy mapping. Compared to previous approaches, we are able to estimate the performance and power metrics, without actually implementing the embedded system. Experimental results on nine well known multimedia and imaging applications prove the efficiency of our technique. Finally, we verify the performance estimations by implementing and simulating the algorithms on the TI C6201 processor.

35 citations

Proceedings ArticleDOI
01 Aug 1993
TL;DR: A hardware prefetching mechanism that detects vector accesses issued by a load/store instruction and prefetches the corresponding data and shows that average memory access time of regular codes is brought within 10% of optimum for processors with usual issue rates.
Abstract: A hardware prefetching mechanism named Speculative Prefetching is proposed. This scheme detects vector accesses issued by a load/store instruction and prefetches the corresponding data. The scheme requires no software add-on, and in some cases it is more powerful than software techniques for identifying regular accesses. The tradeoffs related to its hardware implementation are extensively discussed in order to finely tune the mechanism. Experiments show that average memory access time of regular codes is brought within 10% of optimum for processors with usual issue rates, while performance of irregular codes is little reduced though never degraded. The scheme performance is discussed over a wide range of parameters.

35 citations

References
More filters
Journal ArticleDOI
TL;DR: Specific aspects of cache memories investigated include: the cache fetch algorithm (demand versus prefetch), the placement and replacement algorithms, line size, store-through versus copy-back updating of main memory, cold-start versus warm-start miss ratios, mulhcache consistency, the effect of input /output through the cache, the behavior of split data/instruction caches, and cache size.
Abstract: design issues. Specific aspects of cache memories tha t are investigated include: the cache fetch algorithm (demand versus prefetch), the placement and replacement algorithms, line size, store-through versus copy-back updating of main memory, cold-start versus warm-start miss ratios, mulhcache consistency, the effect of input /output through the cache, the behavior of split data/instruction caches, and cache size. Our discussion includes other aspects of memory system architecture, including translation lookaside buffers. Throughout the paper, we use as examples the implementation of the cache in the Amdahl 470V/6 and 470V/7, the IBM 3081, 3033, and 370/168, and the DEC VAX 11/780. An extensive bibliography is provided.

1,614 citations

01 Jan 1990
TL;DR: This note evaluates several hardware platforms and operating systems using a set of benchmarks that test memory bandwidth and various operating system features such as kernel entry/exit and file systems to conclude that operating system performance does not seem to be improving at the same rate as the base speed of the underlying hardware.
Abstract: This note evaluates several hardware platforms and operating systems using a set of benchmarks that test memory bandwidth and various operating system features such as kernel entry/exit and file systems. The overall conclusion is that operating system performance does not seem to be improving at the same rate as the base speed of the underlying hardware. Copyright  1989 Digital Equipment Corporation d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

467 citations

Journal ArticleDOI
01 Apr 1989
TL;DR: A parameterizable code reorganization and simulation system was developed and used to measure instruction-level parallelism and the average degree of superpipelining metric is introduced, suggesting that this metric is already high for many machines.
Abstract: Superscalar machines can issue several instructions per cycle. Superpipelined machines can issue only one instruction per cycle, but they have cycle times shorter than the latency of any functional unit. In this paper these two techniques are shown to be roughly equivalent ways of exploiting instruction-level parallelism. A parameterizable code reorganization and simulation system was developed and used to measure instruction-level parallelism for a series of benchmarks. Results of these simulations in the presence of various compiler optimizations are presented. The average degree of superpipelining metric is introduced. Our simulations suggest that this metric is already high for many machines. These machines already exploit all of the instruction-level parallelism available in many non-numeric applications, even without parallel instruction issue or higher degrees of pipelining.

316 citations

Journal ArticleDOI
TL;DR: It is shown that prefetching all memory references in very fast computers can increase the effective CPU speed by 10 to 25 percent.
Abstract: Memory transfers due to a cache miss are costly. Prefetching all memory references in very fast computers can increase the effective CPU speed by 10 to 25 percent.

315 citations

Proceedings ArticleDOI
17 May 1988
TL;DR: The inclusion property is essential in reducing the cache coherence complexity for multiprocessors with multilevel cache hierarchies and a new inclusion-coherence mechanism for two-level bus-based architectures is proposed.
Abstract: The inclusion property is essential in reducing the cache coherence complexity for multiprocessors with multilevel cache hierarchies. We give some necessary and sufficient conditions for imposing the inclusion property for fully- and set-associative caches which allow different block sizes at different levels of the hierarchy. Three multiprocessor structures with a two-level cache hierarchy (single cache extension, multiport second-level cache, bus-based) are examined. The feasibility of imposing the inclusion property in these structures is discussed. This leads us to propose a new inclusion-coherence mechanism for two-level bus-based architectures.

236 citations