scispace - formally typeset
Search or ask a question
Book ChapterDOI

Improving Neural Silent Speech Interface Models by Adversarial Training

TL;DR: In this paper, a Generative Adversarial Network (GAN) is proposed to improve the perceptual quality of the generated signals by increasing their similarity to real signals, where the similarity is evaluated via a discriminator network.
Abstract: Besides the well-known classification task, these days neural networks are frequently being applied to generate or transform data, such as images and audio signals. In such tasks, the conventional loss functions like the mean squared error (MSE) may not give satisfactory results. To improve the perceptual quality of the generated signals, one possibility is to increase their similarity to real signals, where the similarity is evaluated via a discriminator network. The combination of the generator and discriminator nets is called a Generative Adversarial Network (GAN). Here, we evaluate this adversarial training framework in the articulatory-to-acoustic mapping task, where the goal is to reconstruct the speech signal from a recording of the movement of articulatory organs. As the generator, we apply a 3D convolutional network that gave us good results in an earlier study. To turn it into a GAN, we extend the conventional MSE training loss with an adversarial loss component provided by a discriminator network. As for the evaluation, we report various objective speech quality metrics such as the Perceptual Evaluation of Speech Quality (PESQ), and the Mel-Cepstral Distortion (MCD). Our results indicate that the application of the adversarial training loss brings about a slight, but consistent improvement in all these metrics.
Citations
More filters
Journal ArticleDOI
01 Nov 2022-Sensors
TL;DR: In this paper , the authors compared the raw scanline representation with the wedge-shaped processed ultrasound tongue imaging (UTI) as the input for the residual network applied for articulatory-to-acoustic mapping (AAM).
Abstract: Within speech processing, articulatory-to-acoustic mapping (AAM) methods can apply ultrasound tongue imaging (UTI) as an input. (Micro)convex transducers are mostly used, which provide a wedge-shape visual image. However, this process is optimized for the visual inspection of the human eye, and the signal is often post-processed by the equipment. With newer ultrasound equipment, now it is possible to gain access to the raw scanline data (i.e., ultrasound echo return) without any internal post-processing. In this study, we compared the raw scanline representation with the wedge-shaped processed UTI as the input for the residual network applied for AAM, and we also investigated the optimal size of the input image. We found no significant differences between the performance attained using the raw data and the wedge-shaped image extrapolated from it. We found the optimal pixel size to be 64 × 43 in the case of the raw scanline input, and 64 × 64 when transformed to a wedge. Therefore, it is not necessary to use the full original 64 × 842 pixels raw scanline, but a smaller image is enough. This allows for the building of smaller networks, and will be beneficial for the development of session and speaker-independent methods for practical applications. AAM systems have the target application of a “silent speech interface”, which could be helpful for the communication of the speaking-impaired, in military applications, or in extremely noisy conditions.

3 citations

References
More filters
Proceedings ArticleDOI
21 Jul 2017
TL;DR: Conditional adversarial networks are investigated as a general-purpose solution to image-to-image translation problems and it is demonstrated that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Abstract: We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Moreover, since the release of the pix2pix software associated with this paper, hundreds of twitter users have posted their own artistic experiments using our system. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without handengineering our loss functions either.

11,958 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: CycleGAN as discussed by the authors learns a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss.
Abstract: Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples. Our goal is to learn a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping F : Y → X and introduce a cycle consistency loss to push F(G(X)) ≈ X (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.

11,682 citations

Posted Content
TL;DR: The conditional version of generative adversarial nets is introduced, which can be constructed by simply feeding the data, y, to the generator and discriminator, and it is shown that this model can generate MNIST digits conditioned on class labels.
Abstract: Generative Adversarial Nets [8] were recently introduced as a novel way to train generative models. In this work we introduce the conditional version of generative adversarial nets, which can be constructed by simply feeding the data, y, we wish to condition on to both the generator and discriminator. We show that this model can generate MNIST digits conditioned on class labels. We also illustrate how this model could be used to learn a multi-modal model, and provide preliminary examples of an application to image tagging in which we demonstrate how this approach can generate descriptive tags which are not part of training labels.

7,987 citations

Posted Content
TL;DR: In this article, a generative adversarial network (GAN) is proposed to estimate generative models via an adversarial process, in which two models are simultaneously trained: a generator G and a discriminator D that estimates the probability that a sample came from the training data rather than G.
Abstract: We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

2,657 citations

Proceedings Article
19 Jun 2016
TL;DR: In this article, a deep convolutional generative adversarial network (GAN) is used to generate plausible images of birds and flowers from detailed text descriptions, translating visual concepts from characters to pixels.
Abstract: Automatic synthesis of realistic images from text would be interesting and useful, but current AI systems are still far from this goal. However, in recent years generic and powerful recurrent neural network architectures have been developed to learn discriminative text feature representations. Meanwhile, deep convolutional generative adversarial networks (GANs) have begun to generate highly compelling images of specific categories, such as faces, album covers, and room interiors. In this work, we develop a novel deep architecture and GAN formulation to effectively bridge these advances in text and image modeling, translating visual concepts from characters to pixels. We demonstrate the capability of our model to generate plausible images of birds and flowers from detailed text descriptions.

1,827 citations