scispace - formally typeset
Search or ask a question
Journal ArticleDOI

In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing

TL;DR: Two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae are designed and developed.
Abstract: In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration into a Web tool called PlasmidFinder that can be used for replicon sequence analysis of raw, contig group, or completely assembled and closed plasmid sequencing data. The PlasmidFinder database currently consists of 116 replicon sequences that match with at least at 80% nucleotide identity all replicon sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection of Salmonella enterica serovar Typhimurium isolates. PlasmidFinder identified a total of 103 replicons and between zero and five different plasmid replicons within each of 49 S . Typhimurium draft genomes tested. The pMLST Web tool was able to subtype genomic sequencing data of plasmids, revealing both known plasmid sequence types (STs) and new alleles and ST variants. In conclusion, testing of the two Web tools using both fully assembled plasmid sequences and WGS-generated draft genomes showed them to be able to detect a broad variety of plasmids that are often associated with antimicrobial resistance in clinically relevant bacterial pathogens.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The strain 17OM39 exhibited tolerance to acidic pH, showed antimicrobial activity and displayed strong cell surface traits such as hydrophobicity and autoaggregation capacity as discussed by the authors, which confirmed the potential of this strain as a candidate probiotic.
Abstract: The human gut microbiome plays a crucial role in human health and efforts need to be done for cultivation and characterisation of bacteria with potential health benefits. Here, we isolated a bacterium from a healthy Indian adult faeces and investigated its potential as probiotic. The cultured bacterial strain 17OM39 was identified as Enterococcus faecium by 16S rRNA gene sequencing. The strain 17OM39 exhibited tolerance to acidic pH, showed antimicrobial activity and displayed strong cell surface traits such as hydrophobicity and autoaggregation capacity. The strain was able to tolerate bile salts and showed bile salt hydrolytic (BSH) activity, exopolysaccharide production and adherence to human HT-29 cell line. Importantly, partial haemolytic activity was detected and the strain was susceptible to the human serum. Genomics investigation of strain 17OM39 revealed the presence of diverse genes encoding for proteolytic enzymes, stress response systems and the ability to produce essential amino acids, vitamins and antimicrobial compound Bacteriocin-A. No virulence factors and plasmids were found in this genome of the strain 17OM39. Collectively, these physiological and genomic features of 17OM39 confirm the potential of this strain as a candidate probiotic.

16 citations


Cites methods from "In Silico Detection and Typing of P..."

  • ...PlasmidFinder was used to search for plasmids within the genome (Carattoli et al. 2014)....

    [...]

Journal ArticleDOI
TL;DR: Carbapenems are last-resort antibiotics used in human medicine and the increased detection of carbapenem-resistant Enterobacteriaceae (CRE) is worrying, and the importance of intervention strategies to contain the environmental spread of resistant bacteria in animals and humans is emphasized.
Abstract: Carbapenems are last-resort antibiotics used in human medicine. The increased detection of carbapenem-resistant Enterobacteriaceae (CRE) is therefore worrying. In 2011 we reported the first livestock-associated VIM-1-producing Salmonella (S.) enterica serovar Infantis (R3) isolate from dust, sampled in a German chicken fattening farm. Due to this observation we retrospectively investigated more than 536 stored bacterial cultures, isolated from 45 chicken fattening farms during the years 2011 and 2012. After a non-selective overnight incubation, the bacteria were transferred to selective media. Escherichia (E.) coli and Salmonella growing on these media were further investigated, including antibiotic susceptibility testing, carbapenemase gene screening and whole genome sequencing (WGS). In total, four CRE were found in three out of 45 investigated farms: Besides R3, one additional Salmonella (G-336-1a) as well as two E. coli isolates (G-336-2, G-268-2). All but G-268-2 harbored the blaVIM-1 gene. Salmonella isolates R3 and G-336-1 were closely related although derived from two different farms. All three blaVIM-1-encoding isolates possessed identical plasmids and the blaVIM-1- containing transposon showed mobility at least in vitro. In isolate G-268-2, the AmpC beta-lactamase gene blaCMY-2 but no known carbapenemase gene was identified. However, a transfer of the phenotypic resistance was possible. Furthermore, G-268-2 contained the mcr-1 gene, combining phenotypical carbapenem- as well as colistin resistance in one isolate. Carbapenem-resistant Enterobacteriaceae have been found in three out of 45 investigated chicken flocks. This finding is alarming and emphasizes the importance of intervention strategies to contain the environmental spread of resistant bacteria in animals and humans.

16 citations


Cites methods from "In Silico Detection and Typing of P..."

  • ...Resistance genes, virulence genes, plasmid incompatibility groups as well as multilocus sequence types were identified using the Webtools ResFinder (Zankari et al., 2012), PlasmidFinder (Carattoli et al., 2014) and MLST 1.8 (Larsen et al., 2012)....

    [...]

  • ..., 2012), PlasmidFinder (Carattoli et al., 2014) and MLST 1....

    [...]

Journal ArticleDOI
25 Nov 2020
TL;DR: A strain of Salmonella enterica serovar Agona isolated from the cloaca of a silver gull chick nesting on an island in geographic proximity to the greater metropolitan area of Sydney, Australia is described.
Abstract: Although most of the approximately 94 million annual human cases of gastroenteritis due to Salmonella enterica resolve without medical intervention, antimicrobial therapy is recommended for patients with severe disease. Wild birds can be natural hosts of Salmonella that pose a threat to human health; however, multiple-drug-resistant serovars of S. enterica have rarely been described. In 2012, silver gull (Chroicocephalus novaehollandiae) chicks at a major breeding colony were shown to host Salmonella, most isolates of which were susceptible to antibiotics. However, multiple-drug-resistant (MDR) Escherichia coli with resistance to carbapenems, ceftazidime, and fluoroquinolones was reported from this breeding colony. In this paper, we describe a novel MDR Salmonella strain subsequently isolated from the same breeding colony. SG17-135, an isolate of S. enterica with phenotypic resistance to 12 individual antibiotics but only nine antibiotic classes including penicillins, cephalosporins, monobactams, macrolides, fluoroquinolones, aminoglycosides, dihydrofolate reductase inhibitors (trimethoprim), sulfonamides, and glycylcyclines was recovered from a gull chick in 2017. Whole-genome sequence (WGS) analysis of SG17-135 identified it as Salmonella enterica serovar Agona (S. Agona) with a chromosome comprising 4,813,284 bp, an IncHI2 ST2 plasmid (pSG17-135-HI2) of 311,615 bp, and an IncX1 plasmid (pSG17-135-X) of 27,511 bp. pSG17-135-HI2 housed a complex resistance region comprising 16 antimicrobial resistance genes including blaCTX-M-55. The acquisition of MDR plasmids by S. enterica described here poses a serious threat to human health. Our study highlights the importance of taking a One Health approach to identify environmental reservoirs of drug-resistant pathogens and MDR plasmids. IMPORTANCE Defining environmental reservoirs hosting mobile genetic elements that shuttle critically important antibiotic resistance genes is key to understanding antimicrobial resistance (AMR) from a One Health perspective. Gulls frequent public amenities, parklands, and sewage and other waste disposal sites and carry drug-resistant Escherichia coli. Here, we report on SG17-135, a strain of Salmonella enterica serovar Agona isolated from the cloaca of a silver gull chick nesting on an island in geographic proximity to the greater metropolitan area of Sydney, Australia. SG17-135 is closely related to pathogenic strains of S. Agona, displays resistance to nine antimicrobial classes, and carries important virulence gene cargo. Most of the antibiotic resistance genes hosted by SG17-135 are clustered on a large IncHI2 plasmid and are flanked by copies of IS26. Wild birds represent an important link in the evolution and transmission of resistance plasmids, and an understanding of their behavior is needed to expose the interplay between clinical and environmental microbial communities.

16 citations


Cites background from "In Silico Detection and Typing of P..."

  • ...3 and the nucleotide databases CARD (54), VFDB (55), and PlasmidFinder (56)....

    [...]

  • ...Genotyping of SG17-135 and other S. Agona genomic assemblies was performed using a custom Snakemake-based workflow which utilized ABRicate (https://github.com/ tseemann/Abricate) version 0.9.3 and the nucleotide databases CARD (54), VFDB (55), and PlasmidFinder (56)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors investigate global food products as potential vehicles for ESBL/AmpC-producing bacteria and identify plasmids harboring resistance genes and identify resistance and virulence genes and sequence types.
Abstract: Plasmid-mediated extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenemase producing Enterobacteriaceae, in particular Escherichia coli and Klebsiella pneumoniae, with potential zoonotic transmission routes, are one of the greatest threats to global health The aim of this study was to investigate global food products as potential vehicles for ESBL/AmpC-producing bacteria and identify plasmids harboring resistance genes We sampled 200 food products purchased from Finland capital region during fall 2018 Products originated from 35 countries from six continents and represented four food categories: vegetables (n = 60), fruits and berries (n = 50), meat (n = 60), and seafood (n = 30) Additionally, subsamples (n = 40) were taken from broiler meat Samples were screened for ESBL/AmpC-producing Enterobacteriaceae and whole genome sequenced to identify resistance and virulence genes and sequence types (STs) To accurately identify plasmids harboring resistance and virulence genes, a hybrid sequence analysis combining long- and short-read sequencing was employed Sequences were compared to previously published plasmids to identify potential epidemic plasmid types Altogether, 14 out of 200 samples were positive for ESBL/AmpC-producing E coli and/or K pneumoniae Positive samples were recovered from meat (18%; 11/60) and vegetables (5%; 3/60) but were not found from seafood or fruit ESBL/AmpC-producing E coli and/or K pneumoniae was found in 90% (36/40) of broiler meat subsamples Whole genome sequencing of selected isolates (n = 21) revealed a wide collection of STs, plasmid replicons, and genes conferring multidrug resistance bla CTX-M-15-producing K pneumoniae ST307 was identified in vegetable (n = 1) and meat (n = 1) samples Successful IncFII plasmid type was recovered from vegetable and both IncFII and IncI1-Iγ types from meat samples Hybrid sequence analysis also revealed chromosomally located beta-lactamase genes in two of the isolates and indicated similarity of food-derived plasmids to other livestock-associated sources and also to plasmids obtained from human clinical samples from various countries, such as IncI type plasmid harboring bla TEM-52C from a human urine sample obtained in the Netherlands which was highly similar to a plasmid obtained from broiler meat in this study Results indicate certain foods contain bacteria with multidrug resistance and pose a possible risk to public health, emphasizing the importance of surveillance and the need for further studies on epidemiology of epidemic plasmids

16 citations

Journal ArticleDOI
TL;DR: Results support the suggestion that, despite the detection of floR, susceptibility to antimicrobials in Flavobacteriaceae is mostly mediated via intrinsic mechanisms rather than the horizontally acquired resistance genes more normally associated with Gram-negative bacterial pathogens such as Enterobacteriaiaceae.

16 citations


Cites methods from "In Silico Detection and Typing of P..."

  • ...In addition, genomes were analysed for the presence of genomic islands using the online tool IslandViewer 3 (Dhillon et al. 2015) and for plasmid sequences using PlasmidFinder (Carattoli et al. 2014) and custom Python scripts....

    [...]

  • ...No matches to plasmid sequences on PlasmidFinder database were found....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A web server providing a convenient way of identifying acquired antimicrobial resistance genes in completely sequenced isolates was created, and the method was evaluated on WGS chromosomes and plasmids of 30 isolates.
Abstract: Objectives Identification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.

3,956 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...To extract the relevant information from the large amount of data generated, a Web-based tool, ResFinder, for the identification of acquired or intrinsically present antimicrobial resistance genes in whole-genome data was recently developed (15)....

    [...]

Journal ArticleDOI
TL;DR: NCBI’s Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints.
Abstract: NCBI's Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints. CDD includes manually curated domain models that make use of protein 3D structure to refine domain models and provide insights into sequence/structure/function relationships. Manually curated models are organized hierarchically if they describe domain families that are clearly related by common descent. As CDD also imports domain family models from a variety of external sources, it is a partially redundant collection. To simplify protein annotation, redundant models and models describing homologous families are clustered into superfamilies. By default, domain footprints are annotated with the corresponding superfamily designation, on top of which specific annotation may indicate high-confidence assignment of family membership. Pre-computed domain annotation is available for proteins in the Entrez/Protein dataset, and a novel interface, Batch CD-Search, allows the computation and download of annotation for large sets of protein queries. CDD can be accessed via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.

2,934 citations


"In Silico Detection and Typing of P..." refers background in this paper

  • ...In particular, the replicase proteins showing the pfam02387 or pfam01051 conserved domains were assigned to the FII and FIB groups, respectively (31)....

    [...]

Journal ArticleDOI
TL;DR: Results indicated that the inc/rep PCR method demonstrates high specificity and sensitivity in detecting replicons on reference plasmids and also revealed the presence of recurrent and common plasmid in epidemiologically unrelated Salmonella isolates of different serotypes.

2,163 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...A collection of 24 previously characterized and fully FIG 1 Numbers of fully sequenced plasmids (y axis) classified into incompatibility groups occurring in the different bacterial species of the Enterobacteriaceae family....

    [...]

  • ...Since 2005, a PCR-based replicon typing (PBRT) scheme has been available that targets in multiplex PCRs the replicons of the major plasmid families occurring in members of the family Enterobacteriaceae (2)....

    [...]

  • ...Here, we present two free, easy-to-use Web tools, PlasmidFinder and pMLST, to analyze and classify plasmids from bacterial species of the family Enterobacteriaceae....

    [...]

  • ...Here, we describe the design of two new easy-to-use Web tools useful for the rapid identification of plasmids in Enterobacteriaceae species that are of interest for epidemiological and clinical microbiology investigations of the plasmid-associated spread of antimicrobial resistance....

    [...]

  • ...This method was initially developed to detect the replicons of plasmids belonging to the 18 major incompatibility (Inc) groups of Enterobacteriaceae species (3)....

    [...]

Journal ArticleDOI
TL;DR: The Bacterial Isolate Genome Sequence Database (BIGSDB) represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach.
Abstract: The opportunities for bacterial population genomics that are being realised by the application of parallel nucleotide sequencing require novel bioinformatics platforms These must be capable of the storage, retrieval, and analysis of linked phenotypic and genotypic information in an accessible, scalable and computationally efficient manner The Bacterial Isolate Genome Sequence Database (BIGSDB) is a scalable, open source, web-accessible database system that meets these needs, enabling phenotype and sequence data, which can range from a single sequence read to whole genome data, to be efficiently linked for a limitless number of bacterial specimens The system builds on the widely used mlstdbNet software, developed for the storage and distribution of multilocus sequence typing (MLST) data, and incorporates the capacity to define and identify any number of loci and genetic variants at those loci within the stored nucleotide sequences These loci can be further organised into 'schemes' for isolate characterisation or for evolutionary or functional analyses Isolates and loci can be indexed by multiple names and any number of alternative schemes can be accommodated, enabling cross-referencing of different studies and approaches LIMS functionality of the software enables linkage to and organisation of laboratory samples The data are easily linked to external databases and fine-grained authentication of access permits multiple users to participate in community annotation by setting up or contributing to different schemes within the database Some of the applications of BIGSDB are illustrated with the genera Neisseria and Streptococcus The BIGSDB source code and documentation are available at http://pubmlstorg/software/database/bigsdb/ Genomic data can be used to characterise bacterial isolates in many different ways but it can also be efficiently exploited for evolutionary or functional studies BIGSDB represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach

1,943 citations

Journal ArticleDOI
TL;DR: A Web-based method for MLST of 66 bacterial species based on whole-genome sequencing data that enables investigators to determine the sequence types of their isolates on the basis of WGS data.
Abstract: Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the “gold standard” of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST.

1,620 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...If raw sequence reads are uploaded, they are first assembled (after the sequencing platform is given by the user) as described previously (16)....

    [...]