scispace - formally typeset
Search or ask a question
Journal ArticleDOI

In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing

TL;DR: Two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae are designed and developed.
Abstract: In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration into a Web tool called PlasmidFinder that can be used for replicon sequence analysis of raw, contig group, or completely assembled and closed plasmid sequencing data. The PlasmidFinder database currently consists of 116 replicon sequences that match with at least at 80% nucleotide identity all replicon sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection of Salmonella enterica serovar Typhimurium isolates. PlasmidFinder identified a total of 103 replicons and between zero and five different plasmid replicons within each of 49 S . Typhimurium draft genomes tested. The pMLST Web tool was able to subtype genomic sequencing data of plasmids, revealing both known plasmid sequence types (STs) and new alleles and ST variants. In conclusion, testing of the two Web tools using both fully assembled plasmid sequences and WGS-generated draft genomes showed them to be able to detect a broad variety of plasmids that are often associated with antimicrobial resistance in clinically relevant bacterial pathogens.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The genome of Pseudomonas putida strain UASWS0946 is reported, a highly ammonia-tolerant nitrifying strain isolated from sewage sludge aerobic granules, which displays adequate genetic equipment for soil depollution, sludge treatment, and biological fertilization in agriculture.
Abstract: We report here the genome of Pseudomonas putida strain UASWS0946, a highly ammonia-tolerant nitrifying strain isolated from sewage sludge aerobic granules, which displays adequate genetic equipment for soil depollution, sludge treatment, and biological fertilization in agriculture.

7 citations


Cites background from "In Silico Detection and Typing of P..."

  • ...In silico screening with PlasmidFinder (13) did not identify any circular or integrated plasmid genome....

    [...]

Journal ArticleDOI
TL;DR: A unique Bacillus strain was isolated from the gut of F. candida, for which evidence of inhibitory activity against an array of pathogens is provided, pointing to the potential of B. toyonensis VU‐DES13 to provide a new source of antimicrobial compounds.
Abstract: Antibiotic resistance necessitates the search for new bioactive compounds with novel mechanisms of action. Natural products derived from bacteria and fungi are widely used in the field of medicine and new environments can be explored as sources of antimicrobials. Bacteria associated with springtails have shown high inhibitory activity against pathogens. Here, we characterized a bacterial strain with high potential for antimicrobial activity, isolated from the gut of the springtail Folsomia candida Willem (Collembola: Isotomidae). The strain was characterized using the ‘analytical profile index' and the ‘minimal inhibitory concentration' assay to test for antibiotic resistance. Agar overlay and agar disk diffusion assays were used to test the inhibitory activity of the strain and its extract against a variety of pathogens, and reporter assays were used to investigate the mode of action. High-performance liquid chromatography was used to analyze and fractionate the extract of bacterial culture, followed by additional assays on the fractions. The genome of the strain was screened for presence of antibiotic resistance genes and secondary metabolite gene clusters. The isolate was identified as Bacillus toyonensis Jimenez etA al., but it displayed differences in metabolic profile when compared to the type species. The isolate was highly resistant to penicillin and inhibited the growth of a variety of pathogenic microorganisms. Genome analysis revealed an enrichment of resistance genes for I²-lactam antibiotics compared to the type isolate. Also, secondary metabolite clusters involved in the production of siderophores, bacteriocins, and nonribosomal peptide synthetases were identified. In conclusion, a unique Bacillus strain was isolated from the gut of F. candida, for which we provide evidence of inhibitory activity against an array of pathogens. This, coupled with high resistance to penicillin as substantiated by the presence of resistance genes, points to the potential of B. toyonensis VU-DES13 to provide a new source of antimicrobial compounds. © 2019 The Authors. Entomologia Experimentalis et Applicata published by John Wiley & Sons Ltd on behalf of Netherlands Entomological Society.

7 citations

Journal ArticleDOI
26 Apr 2022-Mbio
TL;DR: In this article , a plasmid, termed pELF_USZ, which exhibited a linear topology, was transferredable by conjugation and revealed the spread of a variant with decreased daptomycin susceptibility and the acquired ability to utilize N-acetyl-galactosamine (GalNAc), one of the primary constituents of the human gut mucins.
Abstract: Healthcare-associated outbreaks of vancomycin-resistant Enterococcus faecium (VREfm) are a worldwide problem with increasing prevalence. The genomic plasticity of this hospital-adapted pathogen contributes to its efficient spread despite infection control measures. Here, we aimed to identify the genomic and phenotypic determinants of health care-associated transmission of VREfm. We assessed the VREfm transmission networks at the tertiary-care University Hospital of Zurich (USZ) between October 2014 and February 2018 and investigated microevolutionary dynamics of this pathogen. We performed whole-genome sequencing for the 69 VREfm isolates collected during this time frame and assessed the population structure and variability of the vancomycin resistance transposon. Phylogenomic analysis allowed us to reconstruct transmission networks and to unveil external or wider transmission networks undetectable by routine surveillance. Notably, it unveiled a persistent clone, sampled 31 times over a 29-month period. Exploring the evolutionary dynamics of this clone and characterizing the phenotypic consequences revealed the spread of a variant with decreased daptomycin susceptibility and the acquired ability to utilize N-acetyl-galactosamine (GalNAc), one of the primary constituents of the human gut mucins. This nutrient utilization advantage was conferred by a novel plasmid, termed pELF_USZ, which exhibited a linear topology. This plasmid, which was harbored by two distinct clones, was transferable by conjugation. Overall, this work highlights the potential of combining epidemiological, functional genomic, and evolutionary perspectives to unveil adaptation strategies of VREfm. IMPORTANCE Sequencing microbial pathogens causing outbreaks has become a common practice to characterize transmission networks. In addition to the signal provided by vertical evolution, bacterial genomes harbor mobile genetic elements shared horizontally between clones. While macroevolutionary studies have revealed an important role of plasmids and genes encoding carbohydrate utilization systems in the adaptation of Enterococcus faecium to the hospital environment, mechanisms of dissemination and the specific function of many of these genetic determinants remain to be elucidated. Here, we characterize a plasmid providing a nutrient utilization advantage and show evidence for its clonal and horizontal spread at a local scale. Further studies integrating epidemiological, functional genomics, and evolutionary perspectives will be critical to identify changes shaping the success of this pathogen.

7 citations

Journal ArticleDOI
TL;DR: The first isolate of NDM-1-producing and extensively drug resistant Klebsiella pneumoniae in Albania is described, and the presence of acquired resistance genes conferring resistance to β-lactams is revealed.
Abstract: Objectives Carbapenemases represent a public health threat, as they can spread through horizontal gene transfer and cause outbreaks. New Delhi metallo-s-lactamase-1 (NDM-1) is a metallo-s-lactamase that has spread rapidly in the last decade, causing worldwide alarm. This study aimed to describe the first isolate of NDM-1-producing and extensively drug resistant Klebsiella pneumoniae in Albania, its clinical context and genetic characterization. Methods Strain was isolated from both oral and rectal intensive care unit admission screening swabs of a 70-year-old male patient with no history of international travel in the previous 6 months. Sequencing was performed by Illumina NextSeq500 platform, with a paired-end run of 2 by 150 bp, after Nextera XT paired-end library preparation. Sequencing reads were assembled using SPAdes Genome (version 3.6.1) with accurate de novo settings. The assembled contigs were uploaded into the online tools: BIGSdb-Kp, ResFinder and PlasmidFinder. Results Isolate was resistant to all tested antibiotics but tigecycline and trimethoprim-sulfamethoxazole. Sequencing revealed the presence of acquired resistance genes conferring resistance to β-lactams (blaNDM-1, blaCMY-6, blaCTX-M-15 and blaSHV-28), aminoglycosides (rmtC, aac(6′)-Ib3), fluoroquinolones (oqxA, oqxB, aac(6')-Ib-cr), fosfomycin (fosA) and sulfonamides (sul1). The blaNDM-1 gene was located on an IncA/C2 plasmid. Plasmid mediated mcr-1 to mcr-8 genes were absent in both isolates. Resistance to colistin was due to an amino acid substitution (Thr157Pro) in PmrB protein. Conclusions NDM-1-producing Enterobacteriaceae are spreading in the Balkans. Identification of NDM-1-producing and extensively drug resistant K. pneumoniae ST15 in Albania is a cause for serious concern. There should be a continuous national and Balkan multinational surveillance of blaNDM-1-carrying isolates.

7 citations

Posted ContentDOI
16 May 2017-bioRxiv
TL;DR: A comprehensive analysis using transformation and in vitro mutant selection of the relative importance of each of these mechanisms in fluoroquinolone resistance and non-susceptibility is reported, using Klebsiella pneumoniae, one of the most clinically important multi-drug resistant bacterial species known, as a model system.
Abstract: Fluoroquinolone resistance in bacteria is multifactorial, involving target site mutations, reductions in fluoroquinolone entry due to reduced porin production, increased fluoroquinolone efflux, enzymes that modify fluoroquinolones, and Qnr, a DNA mimic that protects the drug target from fluoroquinolone binding Here we report a comprehensive analysis using transformation and in vitro mutant selection, of the relative importance of each of these mechanisms in fluoroquinolone resistance and non-susceptibility, using Klebsiella pneumoniae, one of the most clinically important multi-drug resistant bacterial species known, as a model system Our improved biological understanding was then used to generate rules that could be predict fluoroquinolone susceptibility in K pneumoniae clinical isolates Key to the success of this predictive process was the use of liquid chromatography tandem mass spectrometry to measure the abundance of proteins in extracts of cultured bacteria, identifying which sequence variants seen in the whole genome sequence data were functionally important in the context of fluoroquinolone susceptibility

7 citations

References
More filters
Journal ArticleDOI
TL;DR: A web server providing a convenient way of identifying acquired antimicrobial resistance genes in completely sequenced isolates was created, and the method was evaluated on WGS chromosomes and plasmids of 30 isolates.
Abstract: Objectives Identification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.

3,956 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...To extract the relevant information from the large amount of data generated, a Web-based tool, ResFinder, for the identification of acquired or intrinsically present antimicrobial resistance genes in whole-genome data was recently developed (15)....

    [...]

Journal ArticleDOI
TL;DR: NCBI’s Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints.
Abstract: NCBI's Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints. CDD includes manually curated domain models that make use of protein 3D structure to refine domain models and provide insights into sequence/structure/function relationships. Manually curated models are organized hierarchically if they describe domain families that are clearly related by common descent. As CDD also imports domain family models from a variety of external sources, it is a partially redundant collection. To simplify protein annotation, redundant models and models describing homologous families are clustered into superfamilies. By default, domain footprints are annotated with the corresponding superfamily designation, on top of which specific annotation may indicate high-confidence assignment of family membership. Pre-computed domain annotation is available for proteins in the Entrez/Protein dataset, and a novel interface, Batch CD-Search, allows the computation and download of annotation for large sets of protein queries. CDD can be accessed via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.

2,934 citations


"In Silico Detection and Typing of P..." refers background in this paper

  • ...In particular, the replicase proteins showing the pfam02387 or pfam01051 conserved domains were assigned to the FII and FIB groups, respectively (31)....

    [...]

Journal ArticleDOI
TL;DR: Results indicated that the inc/rep PCR method demonstrates high specificity and sensitivity in detecting replicons on reference plasmids and also revealed the presence of recurrent and common plasmid in epidemiologically unrelated Salmonella isolates of different serotypes.

2,163 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...A collection of 24 previously characterized and fully FIG 1 Numbers of fully sequenced plasmids (y axis) classified into incompatibility groups occurring in the different bacterial species of the Enterobacteriaceae family....

    [...]

  • ...Since 2005, a PCR-based replicon typing (PBRT) scheme has been available that targets in multiplex PCRs the replicons of the major plasmid families occurring in members of the family Enterobacteriaceae (2)....

    [...]

  • ...Here, we present two free, easy-to-use Web tools, PlasmidFinder and pMLST, to analyze and classify plasmids from bacterial species of the family Enterobacteriaceae....

    [...]

  • ...Here, we describe the design of two new easy-to-use Web tools useful for the rapid identification of plasmids in Enterobacteriaceae species that are of interest for epidemiological and clinical microbiology investigations of the plasmid-associated spread of antimicrobial resistance....

    [...]

  • ...This method was initially developed to detect the replicons of plasmids belonging to the 18 major incompatibility (Inc) groups of Enterobacteriaceae species (3)....

    [...]

Journal ArticleDOI
TL;DR: The Bacterial Isolate Genome Sequence Database (BIGSDB) represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach.
Abstract: The opportunities for bacterial population genomics that are being realised by the application of parallel nucleotide sequencing require novel bioinformatics platforms These must be capable of the storage, retrieval, and analysis of linked phenotypic and genotypic information in an accessible, scalable and computationally efficient manner The Bacterial Isolate Genome Sequence Database (BIGSDB) is a scalable, open source, web-accessible database system that meets these needs, enabling phenotype and sequence data, which can range from a single sequence read to whole genome data, to be efficiently linked for a limitless number of bacterial specimens The system builds on the widely used mlstdbNet software, developed for the storage and distribution of multilocus sequence typing (MLST) data, and incorporates the capacity to define and identify any number of loci and genetic variants at those loci within the stored nucleotide sequences These loci can be further organised into 'schemes' for isolate characterisation or for evolutionary or functional analyses Isolates and loci can be indexed by multiple names and any number of alternative schemes can be accommodated, enabling cross-referencing of different studies and approaches LIMS functionality of the software enables linkage to and organisation of laboratory samples The data are easily linked to external databases and fine-grained authentication of access permits multiple users to participate in community annotation by setting up or contributing to different schemes within the database Some of the applications of BIGSDB are illustrated with the genera Neisseria and Streptococcus The BIGSDB source code and documentation are available at http://pubmlstorg/software/database/bigsdb/ Genomic data can be used to characterise bacterial isolates in many different ways but it can also be efficiently exploited for evolutionary or functional studies BIGSDB represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach

1,943 citations

Journal ArticleDOI
TL;DR: A Web-based method for MLST of 66 bacterial species based on whole-genome sequencing data that enables investigators to determine the sequence types of their isolates on the basis of WGS data.
Abstract: Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the “gold standard” of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST.

1,620 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...If raw sequence reads are uploaded, they are first assembled (after the sequencing platform is given by the user) as described previously (16)....

    [...]