scispace - formally typeset
Search or ask a question
Journal ArticleDOI

In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing

TL;DR: Two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae are designed and developed.
Abstract: In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration into a Web tool called PlasmidFinder that can be used for replicon sequence analysis of raw, contig group, or completely assembled and closed plasmid sequencing data. The PlasmidFinder database currently consists of 116 replicon sequences that match with at least at 80% nucleotide identity all replicon sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection of Salmonella enterica serovar Typhimurium isolates. PlasmidFinder identified a total of 103 replicons and between zero and five different plasmid replicons within each of 49 S . Typhimurium draft genomes tested. The pMLST Web tool was able to subtype genomic sequencing data of plasmids, revealing both known plasmid sequence types (STs) and new alleles and ST variants. In conclusion, testing of the two Web tools using both fully assembled plasmid sequences and WGS-generated draft genomes showed them to be able to detect a broad variety of plasmids that are often associated with antimicrobial resistance in clinically relevant bacterial pathogens.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 Feb 2022-MSystems
TL;DR: Untreated hospital wastewater in Ghana is a hot spot for the emergence and spread of genes and gene-plasmid-bacterium associations that accelerate AMR, including to last-resort antibiotics.
Abstract: Antimicrobial resistance (AMR) is one the major threats to public health today, especially resistance to last-resort compounds for the treatment of critical infections, such as carbapenems and aminoglycosides. Innumerable works have focused on the clinical ambit of AMR, but studies addressing the impact of wastewater cycles on the emergence and dissemination of resistant bacteria are still limited. ABSTRACT Wastewater has a major role in antimicrobial resistance (AMR) dynamics and public health. The impact on AMR of wastewater flux at the community-hospital interface in low- and middle-income countries (LMICs) is poorly understood. Therefore, the present study analyzed the epidemiological scenario of resistance genes, mobile genetic elements (MGEs), and bacterial populations in wastewater around the Tamale metropolitan area (Ghana). Wastewater samples were collected from the drainage and canalizations before and after three hospitals and one urban waste treatment plant (UWTP). From all carbapenem/pan-aminoglycoside-resistant bacteria, 36 isolates were selected to determine bacterial species and phenotypical resistance profiles. Nanopore sequencing was used to screen resistance genes and plasmids, whereas, sequence types, resistome and plasmidome contents, pan-genome structures, and resistance gene variants were analyzed with Illumina sequencing. The combination of these sequencing data allowed for the resolution of the resistance gene-carrying platforms. Hospitals and the UWTP collected genetic and bacterial elements from community wastewater and amplified successful resistance gene-bacterium associations, which reached the community canalizations. Uncommon carbapenemase/β-lactamase gene variants, like blaDIM-1, and novel variants, including blaVIM-71, blaCARB-53, and blaCMY-172, were identified and seem to spread via clonal expansion of environmental Pseudomonas spp. However, blaNDM-1, blaCTX-M-15, and armA genes, among others, were associated with MGEs that allowed for their dissemination between environmental and clinical bacterial hosts. In conclusion, untreated hospital wastewater in Ghana is a hot spot for the emergence and spread of genes and gene-plasmid-bacterium associations that accelerate AMR, including to last-resort antibiotics. Urgent actions must be taken in wastewater management in LMICs in order to delay AMR expansion. IMPORTANCE Antimicrobial resistance (AMR) is one the major threats to public health today, especially resistance to last-resort compounds for the treatment of critical infections, such as carbapenems and aminoglycosides. Innumerable works have focused on the clinical ambit of AMR, but studies addressing the impact of wastewater cycles on the emergence and dissemination of resistant bacteria are still limited. The lack of knowledge is even greater when referring to low- and middle-income countries, where there is an absence of accurate sanitary systems. Furthermore, the combination of short- and long-read sequencing has surpassed former technical limitations, allowing the complete characterization of resistance genes, mobile genetic platforms, plasmids, and bacteria. The present study deciphered the multiple elements and routes involved in AMR dynamics in wastewater canalizations and, therefore, in the local population of Tamale, providing the basis to adopt accurate control measures to preserve and promote public health.

5 citations

Journal ArticleDOI
TL;DR:
Abstract: Little information is available on the local epidemiology of mobile genetic elements such as plasmids harboring acquired beta-lactamase genes in Western African Ghana. In the present study, we screened for plasmids in three Escherichia coli and four Klebsiella pneumoniae isolates expressing extended spectrum beta-lactamases (ESBL) mediated by the blaCTX-M-15 gene from chronically infected wounds of Ghanaian patients. Bacterial isolates were subjected to combined short-read and long-read sequencing to obtain the sequences of their respective plasmids. In the blaCTX-M-15-gene-carrying plasmids of the four ESBL-positive K. pneumoniae isolates, IncFIB/IncFII (n = 3) and FIA (n = 1) sequences were detected, while in the blaCTX-M-15-gene-carrying plasmids of the three ESBL-positive E. coli isolates, IncFIA/IncFIB (n = 2) and IncFIB (n = 1) sequences were found. The three IncFIB/IncFII sequence-containing plasmids were almost identical to a K. pneumoniae plasmid reported from France. They belonged to the clonal lineages ST17, ST36 and ST39 of K. pneumoniae, suggesting transversal spread of this obviously evolutionary successful plasmid in Ghana. Other resistance gene-encoding plasmids observed in the assessed Enterobacterales harbored IncFIA/IncR and IncFII sequences. International spread was confirmed by the high genetic similarity to resistance-mediating plasmids published from Asia, Australia, Europe and Northern America, including a blaCTX-M-15-gene-carrying plasmid isolated from a wild bird in Germany. In conclusion, the study contributed to the scarcely available information on the epidemiology of third-generation cephalosporine resistance-mediating plasmids in Ghana. Furthermore, the global spread of resistance-mediating plasmids provided hints on the evolutionary success of individual resistance-harboring plasmids by transversal spread among K. pneumoniae lineages in Ghana.

5 citations

Posted ContentDOI
03 Feb 2020-bioRxiv
TL;DR: The analysis of the genomes of 45 Pseudomonas aeruginosa lineages evolving in the lungs of cystic fibrosis patients is analyzed to identify genes that are lost or acquired during the first years of infection in each of the different lineages, finding that a significant proportion of such genes are associated with virulence.
Abstract: While genome analyses have documented that there are differences in the gene repertoire between evolutionary distant lineages of the same bacterial species, less is known about micro-evolutionary dynamics of gene loss and acquisition within lineages of bacteria as they evolve over the timescale of years. This knowledge is valuable to understand both the basic mutational steps that on long timescales lead to evolutionary distant bacterial lineages, and the evolution of the individual lineages themselves. In the case that lineages evolve in a human host environment, gene loss and acquisition may furthermore have implication for disease. We analyzed the genomes of 45 Pseudomonas aeruginosa lineages evolving in the lungs of cystic fibrosis patients to identify genes that are lost or acquired during the first years of infection in each of the different lineages. On average, the lineage genome content changed with 88 genes (range 0-473). Genes were more often lost than acquired, and prophage genes were more variable than bacterial genes. We identified genes that were lost or acquired independently across different clonal lineages, i.e. convergent molecular evolution. Convergent evolution suggests that there is a selection for loss and acquisition of certain genes in the host environment. We find that a significant proportion of such genes are associated with virulence; a trait previously shown to be important for adaptation. Furthermore, we also compared the genomes across lineages to show that within-lineage variable genes more often belonged to genomic content not shared across all lineages. Finally, we used 4,760 genes shared by 446 P. aeruginosa genomes to develop a stable and discriminatory typing scheme for P. aeruginosa clone types (Pactyper, https://github.com/MigleSur/Pactyper). In sum, our analysis adds to the knowledge on the pace and drivers of gene loss and acquisition in bacteria evolving over multiple years in a human host environment and provides a basis to further understand how gene loss and acquisition plays a role in lineage differentiation and host adaptation.

5 citations


Cites methods from "In Silico Detection and Typing of P..."

  • ...PlasmidFinder [21] database (263 sequences; retrieved: 2018-03-21) was used for plasmid gene, VFDB (2,597 genes; retrieved: 2018-03-21) [22]—for virulence gene and Resfinder (2,280 genes; retrieved: 2018-03-21) [23]—for resistance gene identification, ACLAME database (54,945 genes; 2018-06-07)...

    [...]

Journal ArticleDOI
TL;DR: The results indicate that the MDR S. Kentucky ST198 is present in all investigated poultry hosts in Spain, and that certain strains also carry additional plasmid-mediated ARGs, thus increasing its potential public health significance.
Abstract: Salmonella Kentucky is commonly found in poultry and rarely associated with human disease. However, a multidrug-resistant (MDR) S. Kentucky clone [sequence type (ST)198] has been increasingly reported globally in humans and animals. Our aim here was to assess if the recently reported increase of S. Kentucky in poultry in Spain was associated with the ST198 clone and to characterize this MDR clone and its distribution in Spain. Sixty-six isolates retrieved from turkey, laying hen and broiler in 2011–2017 were subjected to whole-genome sequencing to assess their sequence type, genetic relatedness, and presence of antimicrobial resistance genes (ARGs), plasmid replicons and virulence factors. Thirteen strains were further analysed using long-read sequencing technologies to characterize the genetic background associated with ARGs. All isolates belonged to the ST198 clone and were grouped in three clades associated with the presence of a specific point mutation in the gyrA gene, their geographical origin and isolation year. All strains carried between one and 16 ARGs whose presence correlated with the resistance phenotype to between two and eight antimicrobials. The ARGs were located in the Salmonella genomic island (SGI-1) and in some cases (bla SHV-12 , catA1, cmlA1, dfrA and multiple aminoglycoside-resistance genes) in IncHI2/IncI1 plasmids, some of which were consistently detected in different years/farms in certain regions, suggesting they could persist over time. Our results indicate that the MDR S. Kentucky ST198 is present in all investigated poultry hosts in Spain, and that certain strains also carry additional plasmid-mediated ARGs, thus increasing its potential public health significance.

5 citations

Journal ArticleDOI
TL;DR: Bradyrhizobium elkanii UASWS1015 was isolated from a sewage plant in Switzerland and indicates that it is fully equipped for ammonia assimilation and aromatic compound degradation, and it displays a large type IV secretion system, which characterizes plant-associated microbes.
Abstract: Bradyrhizobium elkanii UASWS1015 was isolated from a sewage plant in Switzerland. Its genome indicates that it is fully equipped for ammonia assimilation and aromatic compound degradation, and it displays a large type IV secretion system, which characterizes plant-associated microbes. Totally deprived of toxins, it could be considered for agricultural and environmental uses.

5 citations


Cites background from "In Silico Detection and Typing of P..."

  • ...In silico screening with PlasmidFinder (8) did not identify any circular or integrated plasmid genome....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A web server providing a convenient way of identifying acquired antimicrobial resistance genes in completely sequenced isolates was created, and the method was evaluated on WGS chromosomes and plasmids of 30 isolates.
Abstract: Objectives Identification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.

3,956 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...To extract the relevant information from the large amount of data generated, a Web-based tool, ResFinder, for the identification of acquired or intrinsically present antimicrobial resistance genes in whole-genome data was recently developed (15)....

    [...]

Journal ArticleDOI
TL;DR: NCBI’s Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints.
Abstract: NCBI's Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints. CDD includes manually curated domain models that make use of protein 3D structure to refine domain models and provide insights into sequence/structure/function relationships. Manually curated models are organized hierarchically if they describe domain families that are clearly related by common descent. As CDD also imports domain family models from a variety of external sources, it is a partially redundant collection. To simplify protein annotation, redundant models and models describing homologous families are clustered into superfamilies. By default, domain footprints are annotated with the corresponding superfamily designation, on top of which specific annotation may indicate high-confidence assignment of family membership. Pre-computed domain annotation is available for proteins in the Entrez/Protein dataset, and a novel interface, Batch CD-Search, allows the computation and download of annotation for large sets of protein queries. CDD can be accessed via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.

2,934 citations


"In Silico Detection and Typing of P..." refers background in this paper

  • ...In particular, the replicase proteins showing the pfam02387 or pfam01051 conserved domains were assigned to the FII and FIB groups, respectively (31)....

    [...]

Journal ArticleDOI
TL;DR: Results indicated that the inc/rep PCR method demonstrates high specificity and sensitivity in detecting replicons on reference plasmids and also revealed the presence of recurrent and common plasmid in epidemiologically unrelated Salmonella isolates of different serotypes.

2,163 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...A collection of 24 previously characterized and fully FIG 1 Numbers of fully sequenced plasmids (y axis) classified into incompatibility groups occurring in the different bacterial species of the Enterobacteriaceae family....

    [...]

  • ...Since 2005, a PCR-based replicon typing (PBRT) scheme has been available that targets in multiplex PCRs the replicons of the major plasmid families occurring in members of the family Enterobacteriaceae (2)....

    [...]

  • ...Here, we present two free, easy-to-use Web tools, PlasmidFinder and pMLST, to analyze and classify plasmids from bacterial species of the family Enterobacteriaceae....

    [...]

  • ...Here, we describe the design of two new easy-to-use Web tools useful for the rapid identification of plasmids in Enterobacteriaceae species that are of interest for epidemiological and clinical microbiology investigations of the plasmid-associated spread of antimicrobial resistance....

    [...]

  • ...This method was initially developed to detect the replicons of plasmids belonging to the 18 major incompatibility (Inc) groups of Enterobacteriaceae species (3)....

    [...]

Journal ArticleDOI
TL;DR: The Bacterial Isolate Genome Sequence Database (BIGSDB) represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach.
Abstract: The opportunities for bacterial population genomics that are being realised by the application of parallel nucleotide sequencing require novel bioinformatics platforms These must be capable of the storage, retrieval, and analysis of linked phenotypic and genotypic information in an accessible, scalable and computationally efficient manner The Bacterial Isolate Genome Sequence Database (BIGSDB) is a scalable, open source, web-accessible database system that meets these needs, enabling phenotype and sequence data, which can range from a single sequence read to whole genome data, to be efficiently linked for a limitless number of bacterial specimens The system builds on the widely used mlstdbNet software, developed for the storage and distribution of multilocus sequence typing (MLST) data, and incorporates the capacity to define and identify any number of loci and genetic variants at those loci within the stored nucleotide sequences These loci can be further organised into 'schemes' for isolate characterisation or for evolutionary or functional analyses Isolates and loci can be indexed by multiple names and any number of alternative schemes can be accommodated, enabling cross-referencing of different studies and approaches LIMS functionality of the software enables linkage to and organisation of laboratory samples The data are easily linked to external databases and fine-grained authentication of access permits multiple users to participate in community annotation by setting up or contributing to different schemes within the database Some of the applications of BIGSDB are illustrated with the genera Neisseria and Streptococcus The BIGSDB source code and documentation are available at http://pubmlstorg/software/database/bigsdb/ Genomic data can be used to characterise bacterial isolates in many different ways but it can also be efficiently exploited for evolutionary or functional studies BIGSDB represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach

1,943 citations

Journal ArticleDOI
TL;DR: A Web-based method for MLST of 66 bacterial species based on whole-genome sequencing data that enables investigators to determine the sequence types of their isolates on the basis of WGS data.
Abstract: Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the “gold standard” of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST.

1,620 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...If raw sequence reads are uploaded, they are first assembled (after the sequencing platform is given by the user) as described previously (16)....

    [...]