scispace - formally typeset
Search or ask a question
Journal ArticleDOI

In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing

TL;DR: Two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae are designed and developed.
Abstract: In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration into a Web tool called PlasmidFinder that can be used for replicon sequence analysis of raw, contig group, or completely assembled and closed plasmid sequencing data. The PlasmidFinder database currently consists of 116 replicon sequences that match with at least at 80% nucleotide identity all replicon sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection of Salmonella enterica serovar Typhimurium isolates. PlasmidFinder identified a total of 103 replicons and between zero and five different plasmid replicons within each of 49 S . Typhimurium draft genomes tested. The pMLST Web tool was able to subtype genomic sequencing data of plasmids, revealing both known plasmid sequence types (STs) and new alleles and ST variants. In conclusion, testing of the two Web tools using both fully assembled plasmid sequences and WGS-generated draft genomes showed them to be able to detect a broad variety of plasmids that are often associated with antimicrobial resistance in clinically relevant bacterial pathogens.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 Jul 2022-Gene
TL;DR: In this paper , the authors report the draft genome sequences of L. paracasei and L. rhamnosus, as well as the analysis of their genetical content.

3 citations

Journal ArticleDOI
TL;DR: The first detection of colistin resistance (mcr-1) genes in multidrug-resistant E. coli isolates from environmental samples in Ecuador was reported in this article .

3 citations

Journal ArticleDOI
TL;DR: The results reveal the radiation of distinct lineages of MRSA ST228 from a German progenitor, as the clone spread into different European countries.
Abstract: Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a common healthcare-associated pathogen that remains a major public health concern. Sequence type 228 (ST228) was first described in Germany and spread to become a successful MRSA clone in several European countries. In 2000, ST228 emerged in Lausanne and has subsequently caused several large outbreaks. Here, we describe the evolutionary history of this clone and identify the genetic changes underlying its expansion in Switzerland. Materials/methods: We aimed to understand the phylogeographic and demographic dynamics of MRSA ST228/ST111 by sequencing 530 representative isolates of this clone that were collected from 14 European countries between 1997 and 2012. Results: The phylogenetic analysis revealed distinct lineages of ST228 isolates associated with specific geographic origins. In contrast, isolates of ST111, which is a single locus variant of ST228 sharing the same spa type t041, formed a monophyletic cluster associated with multiple countries. The evidence points to a German origin of the sampled population, with the basal German lineage being characterized by spa type t001. The highly successful Swiss ST228 lineage diverged from this progenitor clone through the loss of the aminoglycoside-streptothricin resistance gene cluster and the gain of mupirocin resistance. This lineage was introduced first in Geneva and was subsequently introduced into Lausanne. Conclusions: Our results reveal the radiation of distinct lineages of MRSA ST228 from a German progenitor, as the clone spread into different European countries. In Switzerland, ST228 was introduced first in Geneva and was subsequently introduced into Lausanne.

3 citations


Cites methods from "In Silico Detection and Typing of P..."

  • ...The public databases ARG-ANNOT (Gupta et al., 2014) and CARD (Jia et al., 2017) were used as references for detecting the antimicrobial resistance determinants, while the VFDB (Chen et al., 2005) and PlasmidFinder (Carattoli et al., 2014) databases were used for identifying the virulence factor genes and plasmid sequences, respectively....

    [...]

  • ..., 2005) and PlasmidFinder (Carattoli et al., 2014) databases were used for identifying the virulence factor genes and plasmid sequences, respectively....

    [...]

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the genetic features of mcr-1 -carrying plasmid among carbapenem-resistant Enterobacterales (CRE) isolates and the potential genetic basis governing transmission.
Abstract: Abstract The emergence of the mobile colistin-resistance genes mcr-1 has attracted significant attention worldwide. This study aimed to investigate the genetic features of mcr-1 -carrying plasmid among carbapenem-resistant Enterobacterales (CRE) isolates and the potential genetic basis governing transmission. Seventeen mcr -harboring isolates were analyzed based on whole genome sequencing using short-read and long-read platforms. All the mcr-1 -carrying isolates could be conjugatively transferred into a recipient Escherichia coli UB1637. Among these 17 isolates, mcr-1 was located on diverse plasmid Inc types, consisting of IncX4 (11/17; 64.7%), IncI2 (4/17; 23.53%), and IncHI/IncN (2/17; 11.76%). Each of these exhibited remarkable similarity in the backbone set that is responsible for plasmid replication, maintenance, and transfer, with differences being in the upstream and downstream regions containing mcr-1 . The IncHI/IncN type also carried other resistance genes ( bla TEM-1B or bla TEM-135 ). The mcr-1 -harboring IncX4 plasmids were carried in E. coli ST410 (7/11; 63.6%) and ST10 (1/11; 9.1%) and Klebsiella pneumoniae ST15 (1/11; 9.1%), ST336 (1/11; 9.1%), and ST340 (1/11; 9.1%). The IncI2-type plasmid was harbored in E. coli ST3052 (1/4; 25%) and ST1287 (1/4; 25%) and in K. pneumoniae ST336 (2/4; 50%), whereas IncHI/IncN were carried in E. coli ST6721 (1/2; 50%) and new ST (1/2; 50%). The diverse promiscuous plasmids may facilitate the spread of mcr-1 among commensal E. coli or K. pneumoniae strains in patients. These results can provide information for a surveillance system and infection control for dynamic tracing.

3 citations

Journal ArticleDOI
TL;DR: In this article , the authors investigated the origin and character of an increase in NDM-positive E. hormaechei cases in Poland and found that the increase was a consequence of the uncontrolled spread of NDM1-producing K. pneumoniae genotypes.
Abstract: Consecutive Polish regions have become endemic for NDM-1-producing Klebsiella pneumoniae ST11, followed by K. pneumoniae ST147. Since 2017 a significant increase in NDM-positive Enterobacter hormaechei cases has been observed.To investigate the origin and character of this increase in NDM-positive E. hormaechei.The analysis included 160 NDM-producing Enterobacter cloacae complex isolates, recovered in 2015-20 in 37 centres of 9/16 regions. These were typed by PFGE and MLST, and screened by PCR-mapping for NDM-1-encoding Tn125-like elements. Forty-four isolates were sequenced by MiSeq. Species identification was based on whole-genome average nucleotide identity; clonality and phylogeny were inferred by SNP approaches. The structural plasmid analysis was done for 12 isolates sequenced by MinION.The isolates belonged to 11 STs, predominantly ST89 (65.6%), followed by ST146 (15.6%), ST198 (7.5%) and ST1303 (3.7%), representing different E. hormaechei subspecies. Most of the isolates contained the Tn125A variant of the K. pneumoniae ST11 lineage, and several had Tn125F of the ST147. Individual E. hormaechei genotypes represented various epidemiological situations, from sporadic cases to single-hospital, city and regional outbreaks, including one caused by ST89 organisms with 82 cases in 17 centres. Acquisitions of the Tn125A/Tn125F determinants by the E. hormaechei strains occurred around 10 times and were plasmid-mediated, with a significant plasmid rearrangement in case of Tn125F.The increase in E. hormaechei NDM-1 cases in Poland is a consequence of the uncontrolled spread of NDM-1-producing K. pneumoniae genotypes. Several E. hormaechei lineages have acquired NDM-encoding plasmids in different locales which started 'secondary' progressive outbreaks.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: A web server providing a convenient way of identifying acquired antimicrobial resistance genes in completely sequenced isolates was created, and the method was evaluated on WGS chromosomes and plasmids of 30 isolates.
Abstract: Objectives Identification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.

3,956 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...To extract the relevant information from the large amount of data generated, a Web-based tool, ResFinder, for the identification of acquired or intrinsically present antimicrobial resistance genes in whole-genome data was recently developed (15)....

    [...]

Journal ArticleDOI
TL;DR: NCBI’s Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints.
Abstract: NCBI's Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints. CDD includes manually curated domain models that make use of protein 3D structure to refine domain models and provide insights into sequence/structure/function relationships. Manually curated models are organized hierarchically if they describe domain families that are clearly related by common descent. As CDD also imports domain family models from a variety of external sources, it is a partially redundant collection. To simplify protein annotation, redundant models and models describing homologous families are clustered into superfamilies. By default, domain footprints are annotated with the corresponding superfamily designation, on top of which specific annotation may indicate high-confidence assignment of family membership. Pre-computed domain annotation is available for proteins in the Entrez/Protein dataset, and a novel interface, Batch CD-Search, allows the computation and download of annotation for large sets of protein queries. CDD can be accessed via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.

2,934 citations


"In Silico Detection and Typing of P..." refers background in this paper

  • ...In particular, the replicase proteins showing the pfam02387 or pfam01051 conserved domains were assigned to the FII and FIB groups, respectively (31)....

    [...]

Journal ArticleDOI
TL;DR: Results indicated that the inc/rep PCR method demonstrates high specificity and sensitivity in detecting replicons on reference plasmids and also revealed the presence of recurrent and common plasmid in epidemiologically unrelated Salmonella isolates of different serotypes.

2,163 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...A collection of 24 previously characterized and fully FIG 1 Numbers of fully sequenced plasmids (y axis) classified into incompatibility groups occurring in the different bacterial species of the Enterobacteriaceae family....

    [...]

  • ...Since 2005, a PCR-based replicon typing (PBRT) scheme has been available that targets in multiplex PCRs the replicons of the major plasmid families occurring in members of the family Enterobacteriaceae (2)....

    [...]

  • ...Here, we present two free, easy-to-use Web tools, PlasmidFinder and pMLST, to analyze and classify plasmids from bacterial species of the family Enterobacteriaceae....

    [...]

  • ...Here, we describe the design of two new easy-to-use Web tools useful for the rapid identification of plasmids in Enterobacteriaceae species that are of interest for epidemiological and clinical microbiology investigations of the plasmid-associated spread of antimicrobial resistance....

    [...]

  • ...This method was initially developed to detect the replicons of plasmids belonging to the 18 major incompatibility (Inc) groups of Enterobacteriaceae species (3)....

    [...]

Journal ArticleDOI
TL;DR: The Bacterial Isolate Genome Sequence Database (BIGSDB) represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach.
Abstract: The opportunities for bacterial population genomics that are being realised by the application of parallel nucleotide sequencing require novel bioinformatics platforms These must be capable of the storage, retrieval, and analysis of linked phenotypic and genotypic information in an accessible, scalable and computationally efficient manner The Bacterial Isolate Genome Sequence Database (BIGSDB) is a scalable, open source, web-accessible database system that meets these needs, enabling phenotype and sequence data, which can range from a single sequence read to whole genome data, to be efficiently linked for a limitless number of bacterial specimens The system builds on the widely used mlstdbNet software, developed for the storage and distribution of multilocus sequence typing (MLST) data, and incorporates the capacity to define and identify any number of loci and genetic variants at those loci within the stored nucleotide sequences These loci can be further organised into 'schemes' for isolate characterisation or for evolutionary or functional analyses Isolates and loci can be indexed by multiple names and any number of alternative schemes can be accommodated, enabling cross-referencing of different studies and approaches LIMS functionality of the software enables linkage to and organisation of laboratory samples The data are easily linked to external databases and fine-grained authentication of access permits multiple users to participate in community annotation by setting up or contributing to different schemes within the database Some of the applications of BIGSDB are illustrated with the genera Neisseria and Streptococcus The BIGSDB source code and documentation are available at http://pubmlstorg/software/database/bigsdb/ Genomic data can be used to characterise bacterial isolates in many different ways but it can also be efficiently exploited for evolutionary or functional studies BIGSDB represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach

1,943 citations

Journal ArticleDOI
TL;DR: A Web-based method for MLST of 66 bacterial species based on whole-genome sequencing data that enables investigators to determine the sequence types of their isolates on the basis of WGS data.
Abstract: Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the “gold standard” of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST.

1,620 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...If raw sequence reads are uploaded, they are first assembled (after the sequencing platform is given by the user) as described previously (16)....

    [...]