scispace - formally typeset
Search or ask a question
Journal ArticleDOI

In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing

TL;DR: Two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae are designed and developed.
Abstract: In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration into a Web tool called PlasmidFinder that can be used for replicon sequence analysis of raw, contig group, or completely assembled and closed plasmid sequencing data. The PlasmidFinder database currently consists of 116 replicon sequences that match with at least at 80% nucleotide identity all replicon sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection of Salmonella enterica serovar Typhimurium isolates. PlasmidFinder identified a total of 103 replicons and between zero and five different plasmid replicons within each of 49 S . Typhimurium draft genomes tested. The pMLST Web tool was able to subtype genomic sequencing data of plasmids, revealing both known plasmid sequence types (STs) and new alleles and ST variants. In conclusion, testing of the two Web tools using both fully assembled plasmid sequences and WGS-generated draft genomes showed them to be able to detect a broad variety of plasmids that are often associated with antimicrobial resistance in clinically relevant bacterial pathogens.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 Dec 2021
TL;DR: The phylogenies of ftsA and recA were congruent with a possible new 87 species of Bradyrhizobium, which was isolated in Uruguay from a root nodule of Crotalaria ochroleuca.
Abstract: In this study, we report the draft genome sequence of Bradyrhizobium sp. strain Oc8, a rhizobium isolated from Crotalaria ochroleuca,efficient in C. ochroleuca, C. juncea, C. spectabilis, and Cajanus cajan. The whole genome of the strain Oc8 contains 46 scaffolds, 8,283,342 bp, and 63.27% of GC content. Bradyrhizobium sp. Oc8 is an effective nitrogen-fixing bacterium with potential use as an inoculant for legumes used as cover crops and green manures.

3 citations

Posted ContentDOI
01 Oct 2019-bioRxiv
TL;DR: Results strongly suggest that clade C strain evolution includes a loss of virulence, i.e. a process that could enhance micro-organism persistence in a given host and thus optimize transmission, which could ensure clades C strain survival in environments under antibiotic pressure.
Abstract: Escherichia coli of sequence type (ST) 131 resistant to fluoroquinolones and producer of CTX-M-15 is globally one of the major extraintestinal pathogenic E. coli (ExPEC). ST131 phylogenesis showed that multidrug-resistant ST131 strains belong to a clade called C, descending from an ancestral clade called B, comprising mostly antibiotic-susceptible strains. Antibiotic resistance could appear as one of the keys of the clade C global success. We hypothesized that other features of ST131 clade C could contribute to this success since other major global ExPEC clones (ST73, ST95) are mostly antibiotic-susceptible. To test this hypothesis, we measured the growth abilities, early biofilm formation and virulence-factor content of a collection of clade B and clade C strains. Moreover, using competition assays, we measured the capacity of selected representative strains of clades B and C to colonize the mouse intestine and urinary tract, and to kill mice in a septicemia model. Clade B and C strains had similar growth ability. However, clade B strains were more frequently early biofilm producers, expressed mostly faster their type 1 fimbriae and displayed more virulence factor-encoding genes than clade C strains. Clade B outcompeted clade C in the gut and/or urinary tract colonization models and in the septicemia model. These results strongly suggest that clade C strain evolution includes a loss of virulence, i.e. a process that could enhance micro-organism persistence in a given host and thus optimize transmission. This process, associated with acquired antibiotic-resistance, could ensure clade C strain survival in environments under antibiotic pressure. Importance Extraintestinal pathogen Escherichia coli (ExPEC) are virulent but mostly antibiotic-susceptible. One worrying exception is ST131, a major multidrug resistant ExPEC clone that has spread worldwide since the 2000s. To contain the emergence of this threatening clone, we need to understand what factors favored its emergence and dissemination. Here, we investigated whether multidrug-resistant ST131 had advantageous phenotypic properties beyond multidrug resistance. To this end, we competed the emergent multidrug-resistant ST131 with its antibiotic-susceptible ancestor in different conditions: biofilm production, in vivo colonization and virulence experiments. In all in vivo competitions, we found that multidrug-resistant ST131 was losing to its ancestor, suggesting a lesser virulence of multidrug-resistant ST131. It was previously described that losing virulence can increase micro-organism persistence in some populations and subsequently its level of transmissibility. Thus, a decreased level of virulence, associated with multidrug resistance, could explain the global success of ST131.

3 citations

Journal ArticleDOI
10 Sep 2020
TL;DR: The draft genome sequence of strain UASWS1606 of the bacterium Bacillus licheniformis, which is being developed as an agricultural biostimulant, is obtained with an Illumina MiniSeq system.
Abstract: Bacillus licheniformis is a well-known industrial bacterium. New strains show interesting properties of biostimulants and biological control agents for agriculture. Here, we report the draft genome sequence, obtained with an Illumina MiniSeq system, of strain UASWS1606 of the bacterium Bacillus licheniformis, which is being developed as an agricultural biostimulant.

3 citations


Cites background from "In Silico Detection and Typing of P..."

  • ...3 (18) and plasmidSPAdes, both using default settings, did not detect any plasmids....

    [...]

Journal ArticleDOI
TL;DR: X-ray crystallography and modeling experiments suggest that the hydrolytic profile alterations seem to be the result of an increased flexibility and altered conformation of the Ω-loop, caused by the Y221H mutation.
Abstract: With the widespread use and abuse of antibiotics for the past decades, antimicrobial resistance poses a serious threat to public health nowadays. β-Lactams are the most used antibiotics, and β-lactamases are the most widespread resistance mechanism. Class C β-lactamases, also known as cephalosporinases, usually do not hydrolyze the latest and most potent β-lactams, expanded spectrum cephalosporins and carbapenems. However, the recent emergence of extended-spectrum AmpC cephalosporinases, their resistance to inhibition by classic β-lactamase inhibitors, and the fact that they can contribute to carbapenem resistance when paired with impermeability mechanisms, means that these enzymes may still prove worrisome in the future. Here we report and characterize the CMY-136 β-lactamase, a Y221H point mutant derivative of CMY-2. CMY-136 confers an increased level of resistance to ticarcillin, cefuroxime, cefotaxime, and ceftolozane/tazobactam. It is also capable of hydrolyzing ticarcillin and cloxacillin, which act...

3 citations

Journal ArticleDOI
13 Jun 2019
TL;DR: The genomic sequence of a drug-resistant Staphylococcus aureus sequence type 239 (ST239) strain, SA9, isolated from a slaughterhouse chicken carcass in South Africa, is described, including information about its antibiotic resistome, virulome, efflux genes, clonal lineage, and mobilome.
Abstract: Here, we describe the genomic sequence of a drug-resistant Staphylococcus aureus sequence type 239 (ST239) strain, SA9, isolated from a slaughterhouse chicken carcass in South Africa, including information about its antibiotic resistome, virulome, efflux genes, clonal lineage, and mobilome. This genomic information offers vital insights for the control of drug-resistant S. aureus.

3 citations


Cites background from "In Silico Detection and Typing of P..."

  • ...3 (12) identified the rep20 plasmid replicon located on contig 178 (GenBank accession no....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A web server providing a convenient way of identifying acquired antimicrobial resistance genes in completely sequenced isolates was created, and the method was evaluated on WGS chromosomes and plasmids of 30 isolates.
Abstract: Objectives Identification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.

3,956 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...To extract the relevant information from the large amount of data generated, a Web-based tool, ResFinder, for the identification of acquired or intrinsically present antimicrobial resistance genes in whole-genome data was recently developed (15)....

    [...]

Journal ArticleDOI
TL;DR: NCBI’s Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints.
Abstract: NCBI's Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints. CDD includes manually curated domain models that make use of protein 3D structure to refine domain models and provide insights into sequence/structure/function relationships. Manually curated models are organized hierarchically if they describe domain families that are clearly related by common descent. As CDD also imports domain family models from a variety of external sources, it is a partially redundant collection. To simplify protein annotation, redundant models and models describing homologous families are clustered into superfamilies. By default, domain footprints are annotated with the corresponding superfamily designation, on top of which specific annotation may indicate high-confidence assignment of family membership. Pre-computed domain annotation is available for proteins in the Entrez/Protein dataset, and a novel interface, Batch CD-Search, allows the computation and download of annotation for large sets of protein queries. CDD can be accessed via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.

2,934 citations


"In Silico Detection and Typing of P..." refers background in this paper

  • ...In particular, the replicase proteins showing the pfam02387 or pfam01051 conserved domains were assigned to the FII and FIB groups, respectively (31)....

    [...]

Journal ArticleDOI
TL;DR: Results indicated that the inc/rep PCR method demonstrates high specificity and sensitivity in detecting replicons on reference plasmids and also revealed the presence of recurrent and common plasmid in epidemiologically unrelated Salmonella isolates of different serotypes.

2,163 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...A collection of 24 previously characterized and fully FIG 1 Numbers of fully sequenced plasmids (y axis) classified into incompatibility groups occurring in the different bacterial species of the Enterobacteriaceae family....

    [...]

  • ...Since 2005, a PCR-based replicon typing (PBRT) scheme has been available that targets in multiplex PCRs the replicons of the major plasmid families occurring in members of the family Enterobacteriaceae (2)....

    [...]

  • ...Here, we present two free, easy-to-use Web tools, PlasmidFinder and pMLST, to analyze and classify plasmids from bacterial species of the family Enterobacteriaceae....

    [...]

  • ...Here, we describe the design of two new easy-to-use Web tools useful for the rapid identification of plasmids in Enterobacteriaceae species that are of interest for epidemiological and clinical microbiology investigations of the plasmid-associated spread of antimicrobial resistance....

    [...]

  • ...This method was initially developed to detect the replicons of plasmids belonging to the 18 major incompatibility (Inc) groups of Enterobacteriaceae species (3)....

    [...]

Journal ArticleDOI
TL;DR: The Bacterial Isolate Genome Sequence Database (BIGSDB) represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach.
Abstract: The opportunities for bacterial population genomics that are being realised by the application of parallel nucleotide sequencing require novel bioinformatics platforms These must be capable of the storage, retrieval, and analysis of linked phenotypic and genotypic information in an accessible, scalable and computationally efficient manner The Bacterial Isolate Genome Sequence Database (BIGSDB) is a scalable, open source, web-accessible database system that meets these needs, enabling phenotype and sequence data, which can range from a single sequence read to whole genome data, to be efficiently linked for a limitless number of bacterial specimens The system builds on the widely used mlstdbNet software, developed for the storage and distribution of multilocus sequence typing (MLST) data, and incorporates the capacity to define and identify any number of loci and genetic variants at those loci within the stored nucleotide sequences These loci can be further organised into 'schemes' for isolate characterisation or for evolutionary or functional analyses Isolates and loci can be indexed by multiple names and any number of alternative schemes can be accommodated, enabling cross-referencing of different studies and approaches LIMS functionality of the software enables linkage to and organisation of laboratory samples The data are easily linked to external databases and fine-grained authentication of access permits multiple users to participate in community annotation by setting up or contributing to different schemes within the database Some of the applications of BIGSDB are illustrated with the genera Neisseria and Streptococcus The BIGSDB source code and documentation are available at http://pubmlstorg/software/database/bigsdb/ Genomic data can be used to characterise bacterial isolates in many different ways but it can also be efficiently exploited for evolutionary or functional studies BIGSDB represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach

1,943 citations

Journal ArticleDOI
TL;DR: A Web-based method for MLST of 66 bacterial species based on whole-genome sequencing data that enables investigators to determine the sequence types of their isolates on the basis of WGS data.
Abstract: Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the “gold standard” of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST.

1,620 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...If raw sequence reads are uploaded, they are first assembled (after the sequencing platform is given by the user) as described previously (16)....

    [...]