scispace - formally typeset
Search or ask a question
Journal ArticleDOI

In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing

TL;DR: Two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae are designed and developed.
Abstract: In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration into a Web tool called PlasmidFinder that can be used for replicon sequence analysis of raw, contig group, or completely assembled and closed plasmid sequencing data. The PlasmidFinder database currently consists of 116 replicon sequences that match with at least at 80% nucleotide identity all replicon sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection of Salmonella enterica serovar Typhimurium isolates. PlasmidFinder identified a total of 103 replicons and between zero and five different plasmid replicons within each of 49 S . Typhimurium draft genomes tested. The pMLST Web tool was able to subtype genomic sequencing data of plasmids, revealing both known plasmid sequence types (STs) and new alleles and ST variants. In conclusion, testing of the two Web tools using both fully assembled plasmid sequences and WGS-generated draft genomes showed them to be able to detect a broad variety of plasmids that are often associated with antimicrobial resistance in clinically relevant bacterial pathogens.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
03 Aug 2021
TL;DR: The draft genome of Paraburkholderia sp.
Abstract: Here, we report the draft genome of Paraburkholderia sp. XV. This strain was isolated from the rhizosphere of mango (Mangifera indica L.). Its genome consists of 9,189 coding DNA sequences, 60 tRNAs, a single copy of the 16S rRNA, 5S rRNA, and 23S rRNA gene, and 1 tmRNA. The GC content is 62.6%.

3 citations


Cites methods from "In Silico Detection and Typing of P..."

  • ...Plasmid detection was carried out by PlasmidFinder 2.0 (Carattoli et al., 2014), and no plasmids were detected....

    [...]

Journal ArticleDOI
TL;DR: In this paper, 15 Klebsiella pneumoniae isolates harboring bla NDM genes were identified from blood and sputum specimens of patients at a tertiary-care facility (Yangon General Hospital, Yangon, Myanmar) in 2018.
Abstract: Fifteen Klebsiella pneumoniae isolates harbouring bla NDM genes were identified from blood and sputum specimens of patients at a tertiary-care facility (Yangon General Hospital, Yangon, Myanmar) in 2018. Two of the isolates belonged to sequence type (ST) 11, an international high-risk clone. Whole-genome sequencing and phylogenetic analyses revealed that these two isolates were clustered together with other ST11 isolates originating from other countries. The isolates harboured the bla NDM-5 gene on an IncFII-type plasmid that is prevalent among carbapenemase-producing Enterobacteriaceae in Yangon but has rarely been found in other ST11 isolates. Our data suggests the regional presence of the ST11 international high-risk clone and its acquisition of an endemic bla NDM-5-carrying plasmid.

3 citations

Posted ContentDOI
29 Jun 2022-bioRxiv
TL;DR: Results imply that the diversity of pTet family plasmids has increased in Japan, and this study investigated 116 clinical isolates of Campylobacter jejuni from Toyama, Japan, which were isolated from 2015 to 2019.
Abstract: This study investigated 116 clinical isolates of Campylobacter jejuni from Toyama, Japan, which were isolated from 2015 to 2019. Antimicrobial susceptibility testing and whole-genome sequencing were used for phenotypic and genotypic characterization to compare antimicrobial resistance (AMR) profiles and phylogenic linkage. The multilocus sequence typing approach identified 37 sequence types (STs) and 15 clonal complexes (CCs), including 7 novel STs, and the high frequency CCs were CC21 (27.7%), CC48 (10.9%), and CC354 (9.9%). Overall, 58.6% of the isolates were resistant to at least one of the antibiotics and 3.4% were resistant to three or more antibiotic classes. The AMR profiles and related resistant factors were as follows; fluoroquinolones (51.7%), mutation in QRDRs (GyrA T86I), tetracyclines (27.6%), acquisition of tet(O), ampicillin (5.2%), promoter mutation in blaOXA193, aminoglycosides (1.7%), acquisition of ant(6)-Ia and aph(3’)-III, chloramphenicol (0.9%), acquisition of cat. The resistance factors of fosfomycin (1 strain), sulfamethoxazole-trimethoprim (2 strain), and linezolid (1 strain) resistant isolates were unknown. The acquired resistance genes, tet(O), ant(6>)-Ia, aph(3’)-III, and cat, were located on pTet family plasmids. Furthermore, three pTet family plasmids formed larger plasmids that incorporated additional genes such as the Type IV secretion system. A comparison of pTet family plasmids in Japan has not been reported, and these results imply that the diversity of pTet family plasmids has increased. The prevalence of ST4526, belonging to CC21, in Japan has been reported, and it was also the major ST type (10.9%) in this study, suggesting that the ST4526 prevalence continues in Japan.

3 citations

Journal ArticleDOI
TL;DR: The high conjugation ability of IncN3 plasmid isolated from carbapenem-resistant K. pneumoniae was revealed and its capability to mobilize the nonconjugative virulence or resistance plasmids in Klebsiella pneumoniae were confirmed.
Abstract: Nowadays, the underlying mobilization mechanism and evolutionary processes of nonconjugative virulence or resistance plasmids in Klebsiella pneumoniae remain poorly understood. Our study revealed the high conjugation ability of IncN3 plasmid isolated from carbapenem-resistant K. pneumoniae and confirmed its capability to mobilize the nonconjugative virulence or resistance plasmids. ABSTRACT Klebsiella pneumoniae poses a critical challenge to clinical and public health. Along with conjugative plasmids, nonconjugative resistance or virulence plasmids associated with carbapenem-resistant K. pneumoniae (CRKP), hypervirulent K. pneumoniae (hvKP), and even carbapenem-resistant and hypervirulent K. pneumoniae (CR-hvKP) strains have been spreading globally. In this study, a clinical CRKP strain KP2648 was isolated, and the transferability of its plasmids was assessed using conjugation experiments. The transconjugants were characterized by polymerase chain reaction (PCR) detection, XbaI and S1-pulsed-field gel electrophoresis (PFGE), and/or whole-genome sequencing. Genetically modified IncN3 plasmids were employed to elucidate the self-transferability and the mobilization mechanisms. KP2648 has three natural plasmids: a nonconjugative IncFIB/IncHI3B virulence plasmid, a nonconjugative IncFII/IncR carbapenem-resistant plasmid, and a self-transferable IncN3 plasmid with a high conjugation frequency (7.54 ± 1.06) × 10−1. The IncN3 plasmid could mobilize the coexisting nonconjugative virulence/resistance plasmids either directly or by employing intermediate E. coli with two forms: a hybrid plasmid fused with IncN3 or a cotransfer with the helper plasmid, IncN3. Various mobile genetic elements, including ISKpn74, ISKpn14, IS26, ISShes11, ISAba11, and Tn3, are involved in the genetic transposition of diverse hybrid plasmids and the cotransfer process during the intra/interspecies transmission. IMPORTANCE Nowadays, the underlying mobilization mechanism and evolutionary processes of nonconjugative virulence or resistance plasmids in Klebsiella pneumoniae remain poorly understood. Our study revealed the high conjugation ability of IncN3 plasmid isolated from carbapenem-resistant K. pneumoniae and confirmed its capability to mobilize the nonconjugative virulence or resistance plasmids. The self-transferable IncN3 plasmid could facilitate the transmission of pathogenicity and genetic evolution of carbapenem-resistant and hypervirulent K. pneumoniae, including hv-CRKP (virulence plasmid obtained by carbapenem-resistant K. pneumoniae) and CR-hvKP (resistance plasmid obtained by hypervirulent K. pneumoniae), warranting further monitoring.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: A web server providing a convenient way of identifying acquired antimicrobial resistance genes in completely sequenced isolates was created, and the method was evaluated on WGS chromosomes and plasmids of 30 isolates.
Abstract: Objectives Identification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.

3,956 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...To extract the relevant information from the large amount of data generated, a Web-based tool, ResFinder, for the identification of acquired or intrinsically present antimicrobial resistance genes in whole-genome data was recently developed (15)....

    [...]

Journal ArticleDOI
TL;DR: NCBI’s Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints.
Abstract: NCBI's Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints. CDD includes manually curated domain models that make use of protein 3D structure to refine domain models and provide insights into sequence/structure/function relationships. Manually curated models are organized hierarchically if they describe domain families that are clearly related by common descent. As CDD also imports domain family models from a variety of external sources, it is a partially redundant collection. To simplify protein annotation, redundant models and models describing homologous families are clustered into superfamilies. By default, domain footprints are annotated with the corresponding superfamily designation, on top of which specific annotation may indicate high-confidence assignment of family membership. Pre-computed domain annotation is available for proteins in the Entrez/Protein dataset, and a novel interface, Batch CD-Search, allows the computation and download of annotation for large sets of protein queries. CDD can be accessed via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.

2,934 citations


"In Silico Detection and Typing of P..." refers background in this paper

  • ...In particular, the replicase proteins showing the pfam02387 or pfam01051 conserved domains were assigned to the FII and FIB groups, respectively (31)....

    [...]

Journal ArticleDOI
TL;DR: Results indicated that the inc/rep PCR method demonstrates high specificity and sensitivity in detecting replicons on reference plasmids and also revealed the presence of recurrent and common plasmid in epidemiologically unrelated Salmonella isolates of different serotypes.

2,163 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...A collection of 24 previously characterized and fully FIG 1 Numbers of fully sequenced plasmids (y axis) classified into incompatibility groups occurring in the different bacterial species of the Enterobacteriaceae family....

    [...]

  • ...Since 2005, a PCR-based replicon typing (PBRT) scheme has been available that targets in multiplex PCRs the replicons of the major plasmid families occurring in members of the family Enterobacteriaceae (2)....

    [...]

  • ...Here, we present two free, easy-to-use Web tools, PlasmidFinder and pMLST, to analyze and classify plasmids from bacterial species of the family Enterobacteriaceae....

    [...]

  • ...Here, we describe the design of two new easy-to-use Web tools useful for the rapid identification of plasmids in Enterobacteriaceae species that are of interest for epidemiological and clinical microbiology investigations of the plasmid-associated spread of antimicrobial resistance....

    [...]

  • ...This method was initially developed to detect the replicons of plasmids belonging to the 18 major incompatibility (Inc) groups of Enterobacteriaceae species (3)....

    [...]

Journal ArticleDOI
TL;DR: The Bacterial Isolate Genome Sequence Database (BIGSDB) represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach.
Abstract: The opportunities for bacterial population genomics that are being realised by the application of parallel nucleotide sequencing require novel bioinformatics platforms These must be capable of the storage, retrieval, and analysis of linked phenotypic and genotypic information in an accessible, scalable and computationally efficient manner The Bacterial Isolate Genome Sequence Database (BIGSDB) is a scalable, open source, web-accessible database system that meets these needs, enabling phenotype and sequence data, which can range from a single sequence read to whole genome data, to be efficiently linked for a limitless number of bacterial specimens The system builds on the widely used mlstdbNet software, developed for the storage and distribution of multilocus sequence typing (MLST) data, and incorporates the capacity to define and identify any number of loci and genetic variants at those loci within the stored nucleotide sequences These loci can be further organised into 'schemes' for isolate characterisation or for evolutionary or functional analyses Isolates and loci can be indexed by multiple names and any number of alternative schemes can be accommodated, enabling cross-referencing of different studies and approaches LIMS functionality of the software enables linkage to and organisation of laboratory samples The data are easily linked to external databases and fine-grained authentication of access permits multiple users to participate in community annotation by setting up or contributing to different schemes within the database Some of the applications of BIGSDB are illustrated with the genera Neisseria and Streptococcus The BIGSDB source code and documentation are available at http://pubmlstorg/software/database/bigsdb/ Genomic data can be used to characterise bacterial isolates in many different ways but it can also be efficiently exploited for evolutionary or functional studies BIGSDB represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach

1,943 citations

Journal ArticleDOI
TL;DR: A Web-based method for MLST of 66 bacterial species based on whole-genome sequencing data that enables investigators to determine the sequence types of their isolates on the basis of WGS data.
Abstract: Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the “gold standard” of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST.

1,620 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...If raw sequence reads are uploaded, they are first assembled (after the sequencing platform is given by the user) as described previously (16)....

    [...]