scispace - formally typeset
Search or ask a question
Journal ArticleDOI

In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing

TL;DR: Two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae are designed and developed.
Abstract: In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration into a Web tool called PlasmidFinder that can be used for replicon sequence analysis of raw, contig group, or completely assembled and closed plasmid sequencing data. The PlasmidFinder database currently consists of 116 replicon sequences that match with at least at 80% nucleotide identity all replicon sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection of Salmonella enterica serovar Typhimurium isolates. PlasmidFinder identified a total of 103 replicons and between zero and five different plasmid replicons within each of 49 S . Typhimurium draft genomes tested. The pMLST Web tool was able to subtype genomic sequencing data of plasmids, revealing both known plasmid sequence types (STs) and new alleles and ST variants. In conclusion, testing of the two Web tools using both fully assembled plasmid sequences and WGS-generated draft genomes showed them to be able to detect a broad variety of plasmids that are often associated with antimicrobial resistance in clinically relevant bacterial pathogens.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This study confirms the emergence of a MDR S. Infantis pESI-like clone of ST2283 in German broiler farms with presumably high tendency of dissemination and further studies on the epidemiology and control of S.Infantis in broilers are needed to prevent the transfer from poultry into the human food chain.
Abstract: During the last decade, Salmonella enterica subspecies enterica serovar Infantis (S. Infantis) has become more prevalent across Europe with an increased capability to persist in broiler farms. In this study, we aimed to identify potential genetic causes for the increased emergence and longer persistence of S. Infantis in German poultry farms by high-throughput-sequencing. Broiler derived S. Infantis strains from two decades, the 1990s (n = 12) and the 2010s (n = 18), were examined phenotypically and genotypically to detect potential differences responsible for increased prevalence and persistence. S. Infantis organisms were characterized by serotyping and determining antimicrobial susceptibility using the microdilution method. Genotypic characteristics were analyzed by whole genome sequencing (WGS) to detect antimicrobial resistance and virulence genes as well as plasmids. To detect possible clonal relatedness within S. Infantis organisms, 17 accessible genomes from previous studies about emergent S. Infantis were downloaded and analyzed using complete genome sequence of SI119944 from Israel as reference. In contrast to the broiler derived antibiotic-sensitive S. Infantis strains from the 1990s, the majority of strains from the 2010s (15 out of 18) revealed a multidrug-resistance (MDR) phenotype that encodes for at least three antimicrobials families: aminoglycosides [ant(3")-Ia], sulfonamides (sul1), and tetracyclines [tet(A)]. Moreover, these MDR strains carry a virulence gene pattern missing in strains from the 1990s. It includes genes encoding for fimbriae clusters, the yersiniabactin siderophore, mercury and disinfectants resistance and toxin/antitoxin complexes. In depth genomic analysis confirmed that the 15 MDR strains from the 2010s carry a pESI-like megaplasmid with resistance and virulence gene patterns detected in the emerged S. Infantis strain SI119944 from Israel and clones inside and outside Europe. Genotyping analysis revealed two sequence types (STs) among the resistant strains from the 2010s, ST2283 (n = 13) and ST32 (n = 2). The sensitive strains from the 1990s, belong to sequence type ST32 (n = 10) and ST1032 (n = 2). Therefore, this study confirms the emergence of a MDR S. Infantis pESI-like clone of ST2283 in German broiler farms with presumably high tendency of dissemination. Further studies on the epidemiology and control of S. Infantis in broilers are needed to prevent the transfer from poultry into the human food chain.

40 citations


Additional excerpts

  • ..., 2005) and PlasmidFinder (Carattoli et al., 2014), respectively....

    [...]

  • ...PlasmidFinder found the replicon IncFIB(pN55391) in 13 out of 17 of the strains and the majority of them (n = 12) presented the IncI profile: ardA2, pilL3, sogS9, trbA21, and repI1 absent (Supplementary Table S6)....

    [...]

  • ...For detection of antimicrobial resistance genes (AMR), virulence factors and plasmid replicon genes, WGSBAC uses Abricate (v. 0.8.10)6 (Seemann, 2015) and the databases: ResFinder (Zankari et al., 2012) and NCBI (Feldgarden et al., 2019a), Virulence Factor Database (VFDB) (Chen et al., 2005) and PlasmidFinder (Carattoli et al., 2014), respectively....

    [...]

Journal ArticleDOI
30 Jan 2018-PLOS ONE
TL;DR: The results of this study reveal a disturbingly large fraction of multi-drug resistant and ESBL-producing E. coli among equine patients, posing a clear threat to established hygiene management systems and work-place safety of veterinary staff in horse clinics.
Abstract: Pathogens frequently associated with multi-drug resistant (MDR) phenotypes, including extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae (ESBL-E) and Acinetobacter baumannii isolated from horses admitted to horse clinics, pose a risk for animal patients and personnel in horse clinics. To estimate current rates of colonization, a total of 341 equine patients were screened for carriage of zoonotic indicator pathogens at hospital admission. Horses showing clinical signs associated with colic (n = 233) or open wounds (n = 108) were selected for microbiological examination of nostril swabs, faecal samples and wound swabs taken from the open wound group. The results showed alarming carriage rates of Gram-negative MDR pathogens in equine patients: 10.7% (34 of 318) of validated faecal specimens were positive for ESBL-E (94%: ESBL-producing Escherichia coli), with recorded rates of 10.5% for the colic and 11% for the open wound group. 92.7% of the ESBL-producing E. coli were phenotypically resistant to three or more classes of antimicrobials. A. baumannii was rarely detected (0.9%), and all faecal samples investigated were negative for Salmonella, both directly and after two enrichment steps. Screening results for the equine nostril swabs showed detection rates for ESBL-E of 3.4% among colic patients and 0.9% in the open wound group, with an average rate of 2.6% (9/340) for both indications. For all 41 ESBL-producing E. coli isolated, a broad heterogeneity was revealed using pulsed-field gel electrophoresis (PFGE) patterns and whole genome sequencing (WGS) -analysis. However, a predominance of sequence type complex (STC)10 and STC1250 was observed, including several novel STs. The most common genes associated with ESBL-production were identified as blaCTX-M-1 (31/41; 75.6%) and blaSHV-12 (24.4%). The results of this study reveal a disturbingly large fraction of multi-drug resistant and ESBL-producing E. coli among equine patients, posing a clear threat to established hygiene management systems and work-place safety of veterinary staff in horse clinics.

40 citations

Journal ArticleDOI
TL;DR: Data indicate that mcr-4.3 was captured by an A. baumannii-original plasmid via horizontal gene transfer, and pAB18PR065 harbors two copies of type II toxin-antitoxin systems, which are functional in plasmids stabilization and maintenance.
Abstract: Here, we identified mcr-4.3 in Acinetobacter baumannii, which had not been previously observed to carry an mcr gene. The mcr-4.3-harboring A. baumannii strain AB18PR065 was isolated from pig feces from a slaughterhouse in Guangdong Province of China. The mcr-4.3-carrying pAB18PR065 is 25,602 bp in size and could not be transferred in conjugation, transformation, and electroporation experiments, as we did not find any conjugation-related genes therein. pAB18PR065 harbors two copies of type II toxin-antitoxin systems, which are functional in plasmid stabilization and maintenance. pAB18PR065 shares similarity only with one recently identified plasmid, pAb-MCR4.3 (35,502 bp), from a clinical A. baumannii strain. It is likely that the emergence of pAb-MCR4.3 was due to the insertion of an 11,386-bp, ISAba19-based, composite transposon into pAB18PR065. These data indicate that mcr-4.3 was captured by an A. baumannii-original plasmid via horizontal gene transfer.

40 citations

Journal ArticleDOI
TL;DR: The first multidrug-resistant Proteus mirabilis strain producing the carbapenemase OXA-48 (Pm-OXA- 48) isolated at Al-Shifa hospital in Gaza, Palestine is reported.
Abstract: We report the first multidrug-resistant Proteus mirabilis strain producing the carbapenemase OXA-48 (Pm-OXA-48) isolated at Al-Shifa hospital in Gaza, Palestine. Draft genome sequencing of Pm-OXA-48 identified 16 antimicrobial resistance genes, encoding resistance to β-lactams, aminoglycosides, fluoroquinolones, phenicols, streptothricin, tetracycline, and trimethoprim-sulfamethoxazole. Complete sequencing of the bla OXA-48 -harboring plasmid revealed that it is a 72 kb long IncL/M plasmid, harboring carbapenemase gene bla OXA-48 , extended spectrum β-lactamase gene bla CTX-M-14 , and aminoglycoside resistance genes strA , strB , and aph(3 ′ )-VIb .

40 citations


Cites methods from "In Silico Detection and Typing of P..."

  • ...In silico detection and typing of plasmids were performed using PlasmidFinder (10); three plasmid groups were identified in Pm-OXA-48, belonging to incompatibility groups L/M, Q1, and Col3M....

    [...]

Journal ArticleDOI
TL;DR: This is the first report of multi drug resistance plasmids from Enterobacteriaceae with their own CRISPR-Cas system and it is possible that the plasmid type IV CRISpr may depend on the chromosomal type I-ECRISPRs for their competence.
Abstract: CRISPR-Cas (clustered regularly interspersed short palindromic repeats-CRISPR-associated protein) is a microbial adaptive immune system involved in defense against different types of mobile genetic elements. CRISPR-Cas systems are usually found in bacterial and archaeal chromosomes but have also been reported in bacteriophage genomes and in a few mega-plasmids. Klebsiella pneumoniae is an important member of the Enterobacteriaceae with which they share a huge pool of antibiotic resistance genes, mostly via plasmids. CRISPR-Cas systems have been identified in K. pneumoniae chromosomes, but relatively little is known of CRISPR-Cas in the plasmids resident in this species. In this study, we searched for CRISPR-Cas system in 699 complete plasmid sequences (>50-kb) and 217 complete chromosomal sequences of K. pneumoniae from GenBank and analyzed the CRISPR-Cas systems and CRISPR spacers found in plasmids and chromosomes. We found a putative CRISPR-Cas system in the 44 plasmids from Klebsiella species and GenBank search also identified the identical system in three plasmids from other Enterobacteriaceae, with CRISPR spacers targeting different plasmid and chromosome sequences. 45 of 47 plasmids with putative type IV CRISPR had IncFIB replicon and 36 of them had an additional IncHI1B replicon. All plasmids except two are very large (>200 kb) and half of them carried multiple antibiotic resistance genes including blaCTX-M , blaNDM , blaOXA . To our knowledge, this is the first report of multi drug resistance plasmids from Enterobacteriaceae with their own CRISPR-Cas system and it is possible that the plasmid type IV CRISPR may depend on the chromosomal type I-E CRISPRs for their competence. Both chromosomal and plasmid CRISPRs target a large variety of plasmids from this species, further suggesting key roles in the epidemiology of large plasmids.

40 citations

References
More filters
Journal ArticleDOI
TL;DR: A web server providing a convenient way of identifying acquired antimicrobial resistance genes in completely sequenced isolates was created, and the method was evaluated on WGS chromosomes and plasmids of 30 isolates.
Abstract: Objectives Identification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.

3,956 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...To extract the relevant information from the large amount of data generated, a Web-based tool, ResFinder, for the identification of acquired or intrinsically present antimicrobial resistance genes in whole-genome data was recently developed (15)....

    [...]

Journal ArticleDOI
TL;DR: NCBI’s Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints.
Abstract: NCBI's Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints. CDD includes manually curated domain models that make use of protein 3D structure to refine domain models and provide insights into sequence/structure/function relationships. Manually curated models are organized hierarchically if they describe domain families that are clearly related by common descent. As CDD also imports domain family models from a variety of external sources, it is a partially redundant collection. To simplify protein annotation, redundant models and models describing homologous families are clustered into superfamilies. By default, domain footprints are annotated with the corresponding superfamily designation, on top of which specific annotation may indicate high-confidence assignment of family membership. Pre-computed domain annotation is available for proteins in the Entrez/Protein dataset, and a novel interface, Batch CD-Search, allows the computation and download of annotation for large sets of protein queries. CDD can be accessed via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.

2,934 citations


"In Silico Detection and Typing of P..." refers background in this paper

  • ...In particular, the replicase proteins showing the pfam02387 or pfam01051 conserved domains were assigned to the FII and FIB groups, respectively (31)....

    [...]

Journal ArticleDOI
TL;DR: Results indicated that the inc/rep PCR method demonstrates high specificity and sensitivity in detecting replicons on reference plasmids and also revealed the presence of recurrent and common plasmid in epidemiologically unrelated Salmonella isolates of different serotypes.

2,163 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...A collection of 24 previously characterized and fully FIG 1 Numbers of fully sequenced plasmids (y axis) classified into incompatibility groups occurring in the different bacterial species of the Enterobacteriaceae family....

    [...]

  • ...Since 2005, a PCR-based replicon typing (PBRT) scheme has been available that targets in multiplex PCRs the replicons of the major plasmid families occurring in members of the family Enterobacteriaceae (2)....

    [...]

  • ...Here, we present two free, easy-to-use Web tools, PlasmidFinder and pMLST, to analyze and classify plasmids from bacterial species of the family Enterobacteriaceae....

    [...]

  • ...Here, we describe the design of two new easy-to-use Web tools useful for the rapid identification of plasmids in Enterobacteriaceae species that are of interest for epidemiological and clinical microbiology investigations of the plasmid-associated spread of antimicrobial resistance....

    [...]

  • ...This method was initially developed to detect the replicons of plasmids belonging to the 18 major incompatibility (Inc) groups of Enterobacteriaceae species (3)....

    [...]

Journal ArticleDOI
TL;DR: The Bacterial Isolate Genome Sequence Database (BIGSDB) represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach.
Abstract: The opportunities for bacterial population genomics that are being realised by the application of parallel nucleotide sequencing require novel bioinformatics platforms These must be capable of the storage, retrieval, and analysis of linked phenotypic and genotypic information in an accessible, scalable and computationally efficient manner The Bacterial Isolate Genome Sequence Database (BIGSDB) is a scalable, open source, web-accessible database system that meets these needs, enabling phenotype and sequence data, which can range from a single sequence read to whole genome data, to be efficiently linked for a limitless number of bacterial specimens The system builds on the widely used mlstdbNet software, developed for the storage and distribution of multilocus sequence typing (MLST) data, and incorporates the capacity to define and identify any number of loci and genetic variants at those loci within the stored nucleotide sequences These loci can be further organised into 'schemes' for isolate characterisation or for evolutionary or functional analyses Isolates and loci can be indexed by multiple names and any number of alternative schemes can be accommodated, enabling cross-referencing of different studies and approaches LIMS functionality of the software enables linkage to and organisation of laboratory samples The data are easily linked to external databases and fine-grained authentication of access permits multiple users to participate in community annotation by setting up or contributing to different schemes within the database Some of the applications of BIGSDB are illustrated with the genera Neisseria and Streptococcus The BIGSDB source code and documentation are available at http://pubmlstorg/software/database/bigsdb/ Genomic data can be used to characterise bacterial isolates in many different ways but it can also be efficiently exploited for evolutionary or functional studies BIGSDB represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach

1,943 citations

Journal ArticleDOI
TL;DR: A Web-based method for MLST of 66 bacterial species based on whole-genome sequencing data that enables investigators to determine the sequence types of their isolates on the basis of WGS data.
Abstract: Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the “gold standard” of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST.

1,620 citations


"In Silico Detection and Typing of P..." refers methods in this paper

  • ...If raw sequence reads are uploaded, they are first assembled (after the sequencing platform is given by the user) as described previously (16)....

    [...]