scispace - formally typeset
Search or ask a question
Journal ArticleDOI

In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor

01 May 2013-Journal of Power Sources (Elsevier)-Vol. 229, pp 72-78
TL;DR: In this article, a facile strategy to synthesize polypyrrole/molybdenum disulfide (PPy/MoS 2 ) nanocomposite as an advanced electrode material for high-performance supercapacitors applications is reported.
About: This article is published in Journal of Power Sources.The article was published on 2013-05-01. It has received 395 citations till now. The article focuses on the topics: Polypyrrole & Cyclic voltammetry.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of conducting polymer (CP)-based supercapacitors can be found in this article, where the authors summarized recent research progress of conducting polymer-based electrodes for ultracapacitors, including polypyrrole, polyaniline and polythiophene.

895 citations

01 Apr 2016
TL;DR: Heterocyclic pyrrole molecules are in situ aligned and polymerized in the absence of an oxidant between layers of the 2D Ti3C2Tx (MXene), resulting in high volumetric and gravimetric capacitances with capacitance retention of 92% after 25,000 cycles at a 100 mV s(-1) scan rate as discussed by the authors.
Abstract: Heterocyclic pyrrole molecules are in situ aligned and polymerized in the -absence of an oxidant between layers of the 2D Ti3C2Tx (MXene), resulting in high volumetric and gravimetric capacitances with capacitance retention of 92% after 25,000 cycles at a 100 mV s(-1) scan rate.

692 citations

Journal ArticleDOI
TL;DR: A scalable solution-based approach is developed to controllably grow PPy ultrathin films on 2D MoS2 monolayers, offering a feasible solution to create the next generation of energy-storage device with superior power density and energy density.
Abstract: A scalable solution-based approach is developed to controllably grow PPy ultrathin films on 2D MoS2 monolayers. When these sandwiched nanocomposites are utilized as supercapacitor electrodes, a record high specific capacitance, remarkable rate capability, and improved cycling stability are achieved, offering a feasible solution to create the next generation of energy-storage device with superior power density and energy density.

669 citations

Journal ArticleDOI
TL;DR: In this article, a review of 2D supercapacitor electrode materials including transition metal dichalcogenides, transition metal oxides and hydroxides, MXenes, and phosphorene is presented.
Abstract: Supercapacitors represent a major technology to store energy for many applications including electronics, automobiles, military, and space. Despite their high power density, the energy density in supercapacitors is presently inferior to that of the state-of-the-art Li-ion batteries owing to the limited electrochemical performance exhibited by the conventional electrode materials. The advent of two-dimensional (2D) nanomaterials has spurred enormous research interest as supercapacitor electrode materials due to their fascinating electrochemical and mechanical properties. This Review discusses cutting-edge research on some of the key 2D supercapacitor electrode materials including transition metal dichalcogenides, transition metal oxides and hydroxides, MXenes, and phosphorene. Various synthetic approaches, novel electrode designs, and microstructure tuning of these 2D materials for achieving high energy and power densities are discussed.

561 citations

References
More filters
Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations

Journal ArticleDOI
TL;DR: CMG materials are made from 1-atom thick sheets of carbon, functionalized as needed, and here their performance in an ultracapacitor cell is demonstrated, illustrating the exciting potential for high performance, electrical energy storage devices based on this new class of carbon material.
Abstract: The surface area of a single graphene sheet is 2630 m2/g, substantially higher than values derived from BET surface area measurements of activated carbons used in current electrochemical double layer capacitors. Our group has pioneered a new carbon material that we call chemically modified graphene (CMG). CMG materials are made from 1-atom thick sheets of carbon, functionalized as needed, and here we demonstrate in an ultracapacitor cell their performance. Specific capacitances of 135 and 99 F/g in aqueous and organic electrolytes, respectively, have been measured. In addition, high electrical conductivity gives these materials consistently good performance over a wide range of voltage scan rates. These encouraging results illustrate the exciting potential for high performance, electrical energy storage devices based on this new class of carbon material.

7,505 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface.
Abstract: The ultimate aim of any detection method is to achieve such a level of sensitivity that individual quanta of a measured entity can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far been beyond the reach of any detection technique, including solid-state gas sensors hailed for their exceptional sensitivity1, 2, 3, 4. The fundamental reason limiting the resolution of such sensors is fluctuations due to thermal motion of charges and defects5, which lead to intrinsic noise exceeding the sought-after signal from individual molecules, usually by many orders of magnitude. Here, we show that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface. The adsorbed molecules change the local carrier concentration in graphene one by one electron, which leads to step-like changes in resistance. The achieved sensitivity is due to the fact that graphene is an exceptionally low-noise material electronically, which makes it a promising candidate not only for chemical detectors but also for other applications where local probes sensitive to external charge, magnetic field or mechanical strain are required.

7,318 citations

Journal ArticleDOI
TL;DR: This tutorial review provides a brief summary of recent research progress on carbon-based electrode materials forsupercapacitors, as well as the importance of electrolytes in the development of supercapacitor technology.
Abstract: This tutorial review provides a brief summary of recent research progress on carbon-based electrode materials for supercapacitors, as well as the importance of electrolytes in the development of supercapacitor technology. The basic principles of supercapacitors, the characteristics and performances of various nanostructured carbon-based electrode materials are discussed. Aqueous and non-aqueous electrolyte solutions used in supercapacitors are compared. The trend on future development of high-power and high-energy supercapacitors is analyzed.

6,057 citations

Journal ArticleDOI
TL;DR: The transparency, conductivity, and ambipolar transfer characteristics of the films suggest their potential as another materials candidate for electronics and opto-electronic applications.
Abstract: In this work we present a low cost and scalable technique, via ambient pressure chemical vapor deposition (CVD) on polycrystalline Ni films, to fabricate large area (∼cm2) films of single- to few-layer graphene and to transfer the films to nonspecific substrates. These films consist of regions of 1 to ∼12 graphene layers. Single- or bilayer regions can be up to 20 μm in lateral size. The films are continuous over the entire area and can be patterned lithographically or by prepatterning the underlying Ni film. The transparency, conductivity, and ambipolar transfer characteristics of the films suggest their potential as another materials candidate for electronics and opto-electronic applications.

5,663 citations