scispace - formally typeset
Search or ask a question
Journal ArticleDOI

In situ synthesis of graphene oxide and its composites with iron oxide

01 Jun 2009-New Carbon Materials (Elsevier)-Vol. 24, Iss: 2, pp 147-152
TL;DR: In this paper, a single step method was developed for the preparation of graphene oxide/Fe2O3 composites by exfoliation of graphite oxide with an oxygen-rich ferric acetyl acetonate complex.
About: This article is published in New Carbon Materials.The article was published on 2009-06-01. It has received 124 citations till now. The article focuses on the topics: Graphene oxide paper & Oxide.
Citations
More filters
Journal ArticleDOI
18 Jul 2011-Small
TL;DR: The synthesis, characterization, properties, and applications of graphene-based materials are discussed and the promising properties together with the ease of processibility and functionalization make graphene- based materials ideal candidates for incorporation into a variety of functional materials.
Abstract: Graphene, a two-dimensional, single-layer sheet of sp(2) hybridized carbon atoms, has attracted tremendous attention and research interest, owing to its exceptional physical properties, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Other forms of graphene-related materials, including graphene oxide, reduced graphene oxide, and exfoliated graphite, have been reliably produced in large scale. The promising properties together with the ease of processibility and functionalization make graphene-based materials ideal candidates for incorporation into a variety of functional materials. Importantly, graphene and its derivatives have been explored in a wide range of applications, such as electronic and photonic devices, clean energy, and sensors. In this review, after a general introduction to graphene and its derivatives, the synthesis, characterization, properties, and applications of graphene-based materials are discussed.

2,246 citations

Journal ArticleDOI
TL;DR: Graphene is one of the most promising materials in nanotechnology and from a theoretical point of view, it provides the ultimate two-dimensional model of a catalytic support as mentioned in this paper, and some promising results have already been obtained with few-layer graphene.

842 citations

Journal ArticleDOI
TL;DR: Graphene nanoparticle hybrids exist in two forms, as graphene–nanoparticle composites and graphene-encapsulated nanoparticles, and can be used for various bioapplications including biosensors, photothermal therapies, stem cell/tissue engineering, drug/gene delivery, and bioimaging.
Abstract: Graphene is composed of single-atom thick sheets of sp2 bonded carbon atoms that are arranged in a perfect two-dimensional (2D) honeycomb lattice. Because of this structure, graphene is characterized by a number of unique and exceptional structural, optical, and electronic properties.1 Specifically, these extraordinary properties include, but are not limited to, a high planar surface area that is calculated to be 2630 m2 g−1,2 superior mechanical strength with a Young’s modulus of 1100 GPa,3 unparalleled thermal conductivity (5000 W m−1 K−1),4 remarkable electronic properties (e.g., high carrier mobility [10 000 cm2 V−1 s−1] and capacity),5 and alluring optical characteristics (e.g., high opacity [~97.7%] and the ability to quench fluorescence).6 As such, it should come as no surprise that graphene is currently, without any doubt, the most intensively studied material for a wide range of applications that include electronic, energy, and sensing outlets.1c Moreover, because of these unique chemical and physical properties, graphene and graphene-based nanomaterials have attracted increasing interest, and, arguably, hold the greatest promise for implementation into a wide array of bioapplications.7 In the last several years, numerous studies have utilized graphene in bioapplications ranging from the delivery of chemotherapeutics for the treatment of cancer8 to biosensing applications for a host of medical conditions9 and even for the differentiation and imaging of stem cells.10 While promising and exciting, recent reports have demonstrated that the combination of graphene with nanomaterials such as nanoparticles, thereby forming graphene–nanoparticle hybrid structures, offers a number of additional unique physicochemical properties and functions that are both highly desirable and markedly advantageous for bioapplications when compared to the use of either material alone (Figure 1).11 These graphene–nanoparticle hybrid structures are especially alluring because not only do they display the individual properties of the nanoparticles, which can already possess beneficial optical, electronic, magnetic, and structural properties that are unavailable in bulk materials, and of graphene, but they also exhibit additional advantageous and often synergistic properties that greatly augment their potential for bioapplications. Open in a separate window Figure 1 Graphene nanoparticle hybrids exist in two forms, as graphene–nanoparticle composites and graphene-encapsulated nanoparticles, and can be used for various bioapplications including biosensors, photothermal therapies, stem cell/tissue engineering, drug/gene delivery, and bioimaging. Panel (A) reprinted with permission from ref 110. Copyright 2012 Wiley. Panel (B) reprinted with permission from ref 211. Copyright 2013 Elsevier. Panel (C) reprinted with permission from ref 244. Copyright 2013 Wiley.

583 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis and application of GN-inorganic nanocomposites is presented in this paper, where the challenges and perspective of these emerging nanocompositionites are also discussed.
Abstract: Graphene (GN) has received intense interest in fields such as physics, chemistry, biology and materials science due to its exceptional electrical, mechanical, thermal and optical properties as well as its unique two-dimensional (2D) structure and large surface area. Recently, GN–inorganic nanocomposites have been opened up an exciting new field in the science and technology of GN. From the viewpoint of chemistry and materials, this account presents an overview of the synthesis and application of GN–inorganic nanocomposites. The challenges and perspective of these emerging nanocomposites are also discussed.

554 citations

Journal ArticleDOI
TL;DR: A facile approach to multifunctional iron oxide nanoparticle-attached graphene nanosheets (graphene@Fe(3)O(4)) which show the integrated properties of strong supraparamagnetism, electrical conductivity, highly chemical reactivity, good solubility, and excellent processability is reported.
Abstract: The amazing properties of graphene are triggering extensive interests of both scientists and engineers, whereas how to fully utilize the unique attributes of graphene to construct novel graphene-based composites with tailor-made, integrated functions remains to be a challenge. Here, we report a facile approach to multifunctional iron oxide nanoparticle-attached graphene nanosheets (graphene@Fe3O4) which show the integrated properties of strong supraparamagnetism, electrical conductivity, highly chemical reactivity, good solubility, and excellent processability. The synthesis method is efficient, scalable, green, and controllable and has the feature of reduction of graphene oxide and formation of Fe3O4 nanoparticles in one step. When the feed ratios are adjusted, the average diameter of Fe3O4 nanoparticles (1.2−6.3 nm), the coverage density of Fe3O4 nanoparticles on graphene nanosheets (5.3−57.9%), and the saturated magnetization of graphene@Fe3O4 (0.5−44.1 emu/g) can be controlled readily. Because of the ...

384 citations

References
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Abstract: Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

18,958 citations

Journal ArticleDOI
20 Jul 2006-Nature
TL;DR: The bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Abstract: The remarkable mechanical properties of carbon nanotubes arise from the exceptional strength and stiffness of the atomically thin carbon sheets (graphene) from which they are formed. In contrast, bulk graphite, a polycrystalline material, has low fracture strength and tends to suffer failure either by delamination of graphene sheets or at grain boundaries between the crystals. Now Stankovich et al. have produced an inexpensive polymer-matrix composite by separating graphene sheets from graphite and chemically tuning them. The material contains dispersed graphene sheets and offers access to a broad range of useful thermal, electrical and mechanical properties. Individual sheets of graphene can be readily incorporated into a polymer matrix, giving rise to composite materials having potentially useful electronic properties. Graphene sheets—one-atom-thick two-dimensional layers of sp2-bonded carbon—are predicted to have a range of unusual properties. Their thermal conductivity and mechanical stiffness may rival the remarkable in-plane values for graphite (∼3,000 W m-1 K-1 and 1,060 GPa, respectively); their fracture strength should be comparable to that of carbon nanotubes for similar types of defects1,2,3; and recent studies have shown that individual graphene sheets have extraordinary electronic transport properties4,5,6,7,8. One possible route to harnessing these properties for applications would be to incorporate graphene sheets in a composite material. The manufacturing of such composites requires not only that graphene sheets be produced on a sufficient scale but that they also be incorporated, and homogeneously distributed, into various matrices. Graphite, inexpensive and available in large quantity, unfortunately does not readily exfoliate to yield individual graphene sheets. Here we present a general approach for the preparation of graphene-polymer composites via complete exfoliation of graphite9 and molecular-level dispersion of individual, chemically modified graphene sheets within polymer hosts. A polystyrene–graphene composite formed by this route exhibits a percolation threshold10 of ∼0.1 volume per cent for room-temperature electrical conductivity, the lowest reported value for any carbon-based composite except for those involving carbon nanotubes11; at only 1 volume per cent, this composite has a conductivity of ∼0.1 S m-1, sufficient for many electrical applications12. Our bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.

11,866 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: In this paper, an experimental investigation of magneto-transport in a high-mobility single layer of Graphene is presented, where an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene is observed.
Abstract: When electrons are confined in two-dimensional materials, quantum-mechanically enhanced transport phenomena such as the quantum Hall effect can be observed. Graphene, consisting of an isolated single atomic layer of graphite, is an ideal realization of such a two-dimensional system. However, its behaviour is expected to differ markedly from the well-studied case of quantum wells in conventional semiconductor interfaces. This difference arises from the unique electronic properties of graphene, which exhibits electron–hole degeneracy and vanishing carrier mass near the point of charge neutrality1,2. Indeed, a distinctive half-integer quantum Hall effect has been predicted3,4,5 theoretically, as has the existence of a non-zero Berry's phase (a geometric quantum phase) of the electron wavefunction—a consequence of the exceptional topology of the graphene band structure6,7. Recent advances in micromechanical extraction and fabrication techniques for graphite structures8,9,10,11,12 now permit such exotic two-dimensional electron systems to be probed experimentally. Here we report an experimental investigation of magneto-transport in a high-mobility single layer of graphene. Adjusting the chemical potential with the use of the electric field effect, we observe an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene. The relevance of Berry's phase to these experiments is confirmed by magneto-oscillations. In addition to their purely scientific interest, these unusual quantum transport phenomena may lead to new applications in carbon-based electronic and magneto-electronic devices.

11,122 citations