scispace - formally typeset
Search or ask a question
Journal ArticleDOI

In vitro selection of RNA molecules that bind specific ligands.

30 Aug 1990-Nature (Nature Publishing Group)-Vol. 346, Iss: 6287, pp 818-822
TL;DR: Subpopulations of RNA molecules that bind specifically to a variety of organic dyes have been isolated from a population of random sequence RNA molecules.
Abstract: Subpopulations of RNA molecules that bind specifically to a variety of organic dyes have been isolated from a population of random sequence RNA molecules. Roughly one in 10(10) random sequence RNA molecules folds in such a way as to create a specific binding site for small ligands.
Citations
More filters
Journal ArticleDOI
15 Feb 1991-Science
TL;DR: High-density arrays formed by light-directed synthesis are potentially rich sources of chemical diversity for discovering new ligands that bind to biological receptors and for elucidating principles governing molecular interactions.
Abstract: Solid-phase chemistry, photolabile protecting groups, and photolithography have been combined to achieve light-directed, spatially addressable parallel chemical synthesis to yield a highly diverse set of chemical products. Binary masking, one of many possible combinatorial synthesis strategies, yields 2n compounds in n chemical steps. An array of 1024 peptides was synthesized in ten steps, and its interaction with a monoclonal antibody was assayed by epifluorescence microscopy. High-density arrays formed by light-directed synthesis are potentially rich sources of chemical diversity for discovering new ligands that bind to biological receptors and for elucidating principles governing molecular interactions. The generality of this approach is illustrated by the light-directed synthesis of a dinucleotide. Spatially directed synthesis of complex compounds could also be used for microfabrication of devices.

3,351 citations

Journal ArticleDOI
TL;DR: This review discusses various nanomaterials that have been explored to mimic different kinds of enzymes and covers their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal.
Abstract: Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

2,951 citations

Journal ArticleDOI
06 Feb 1992-Nature
TL;DR: The isolation of single-stranded DNA aptamers to the protease thrombin of the blood coagulation cascade is described and binding affinities in the range 25–200 nM are reported.
Abstract: Aptamers are double-stranded DNA or single-stranded RNA molecules that bind specific molecular targets. Large randomly generated populations can be enriched in aptamers by in vitro selection and polymerase chain reaction. But so far single-stranded DNA has not been investigated for aptamer properties, nor has a target protein been considered that does not interact physiologically with nucleic acid. Here we describe the isolation of single-stranded DNA aptamers to the protease thrombin of the blood coagulation cascade and report binding affinities in the range 25-200 nM. Sequence data from 32 thrombin aptamers, selected from a pool of DNA containing 60 nucleotides of random sequence, displayed a highly conserved 14-17-base region. Several of these aptamers at nanomolar concentrations inhibited thrombin-catalysed fibrin-clot formation in vitro using either purified fibrinogen or human plasma.

2,358 citations

Journal ArticleDOI
TL;DR: This work has shown that coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface can be associated with surface plasmons, which have potential applications in miniaturized optical devices, sensors, and photonic circuits.
Abstract: Surface plasmons (SPs) are coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface. The growing field of research on such light -metal interactions is known as ‘plasmonics’. 1-3 This branch of research has attracted much attention due to its potential applications in miniaturized optical devices, sensors, and photonic circuits as well as in medical diagnostics and therapeutics. 4-8

2,284 citations

Journal ArticleDOI
TL;DR: The fundamental concepts of enhanced permeability and retention effect (EPR) are revisited and the mechanisms proposed to enhance preferential "retention" in the tumor, whether using active targeting of nanoparticles, binding of drugs to their tumoral targets or the presence of tumor associated macrophages are explored.

2,199 citations


Cites background from "In vitro selection of RNA molecules..."

  • ...Since the 1990s, the isolation of ligands has gone from simple chromatographic separation [280-282], to cellbased screening methods [283, 284] and in vivo selection [285]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A group of programs that will interact with each other has been developed for the Digital Equipment Corporation VAX computer using the VMS operating system.
Abstract: The University of Wisconsin Genetics Computer Group (UWGCG) has been organized to develop computational tools for the analysis and publication of biological sequence data. A group of programs that will interact with each other has been developed for the Digital Equipment Corporation VAX computer using the VMS operating system. The programs available and the conditions for transfer are described.

14,575 citations

Journal ArticleDOI
TL;DR: A cDNA clone encoding CD28 is isolated by a simple and highly efficient cloning strategy based on transient expression in COS cells based on the use of an efficient method to prepare large plasmid cDNA libraries.
Abstract: CD28 (Tp44) is a human T-cell-specific homodimer surface protein that may participate in T-cell activation. We have isolated a cDNA clone encoding CD28 by a simple and highly efficient cloning strategy based on transient expression in COS cells. Central to this strategy is the use of an efficient method to prepare large plasmid cDNA libraries. The libraries are introduced into COS cells, where transient expression of surface antigen allows the isolation of cDNAs by way of monoclonal antibody binding. The CD28 cDNA encodes a highly glycosylated membrane protein with homology to the immunoglobulin superfamily and directs the production of a homodimer in transfected COS cells.

934 citations

Journal ArticleDOI
05 Sep 1986-Science
TL;DR: A method is described for directly cloning enzymatically amplified segments of genomic DNA into an M13 vector for sequence analysis and promises to be a rapid method for obtaining reliable genomic sequences from nanogram amounts of DNA.
Abstract: A method is described for directly cloning enzymatically amplified segments of genomic DNA into an M13 vector for sequence analysis. A 110-base pair fragment of the human beta-globin gene and a 242-base pair fragment of the human leukocyte antigen DQ alpha locus were amplified by the polymerase chain reaction method, a procedure based on repeated cycles of denaturation, primer annealing, and extension by DNA polymerase I. Oligonucleotide primers with restriction endonuclease sites added to their 5' ends were used to facilitate the cloning of the amplified DNA. The analysis of cloned products allowed the quantitative evaluation of the amplification method's specificity and fidelity. Given the low frequency of sequence errors observed, this approach promises to be a rapid method for obtaining reliable genomic sequences from nanogram amounts of DNA.

783 citations

Journal ArticleDOI
TL;DR: An approach is developed for constructing models of ancient organisms using data from metabolic pathways, genetic organization, chemical structure, and enzymatic reaction mechanisms found in contemporary organisms, illustrated by a partial reconstruction of a model for the "breakthrough organism," the last organism to use RNA as the sole genetically encoded biological catalyst.
Abstract: An approach is developed for constructing models of ancient organisms using data from metabolic pathways, genetic organization, chemical structure, and enzymatic reaction mechanisms found in contemporary organisms. This approach is illustrated by a partial reconstruction of a model for the "breakthrough organism," the last organism to use RNA as the sole genetically encoded biological catalyst. As reconstructed here, this organism had a complex metabolism that included dehydrogenations, transmethylations, carbon-carbon bond-forming reactions, and an energy metabolism based on phosphate esters. Furthermore, the breakthrough organism probably used DNA to store genetic information, biosynthesized porphyrins, and used terpenes as its major lipid component. This model differs significantly from prevailing models based primarily on genetic data.

419 citations

Journal ArticleDOI
TL;DR: In this article, a procedure was described to utilize blue dextran-separharose as an affinity chromatographic column specific for the super-secondary structure called the dinucleotide fold, which forms the binding sites for substrates and effectors on a wide range of proteins.
Abstract: A procedure is described to utilize blue dextran-Sepharose as an affinity chromatographic column specific for the super-secondary structure called the dinucleotide fold, which forms the binding sites for substrates and effectors on a wide range of proteins. The procedure can be used to identify proteins, either purified or in crude cellular extracts, that possess the dinucleotide fold and to significantly improve the purification procedures for those proteins that possess the fold.

360 citations