scispace - formally typeset
Search or ask a question
Journal ArticleDOI

In vivo imaging of EVs in zebrafish: New perspectives from "the waterside".

TL;DR: The state of the art of EV imaging in vivo is analyzed, focusing in particular on zebrafish as a promising model to visualize, study, and characterize endogenous EVs in real‐time and expand the understanding of EV biology at cellular and systems level.
Abstract: To harmoniously coordinate the activities of all its different cell types, a multicellular organism critically depends on intercellular communication. One recently discovered mode of intercellular cross-talk is based on the exchange of "extracellular vesicles" (EVs). EVs are nano-sized heterogeneous lipid bilayer vesicles enriched in a variety of biomolecules that mediate short- and long-distance communication between different cells, and between cells and their environment. Numerous studies have demonstrated important aspects pertaining to the dynamics of their release, their uptake, and sub-cellular fate and roles in vitro. However, to demonstrate these and other aspects of EV biology in a relevant, fully physiological context in vivo remains challenging. In this review we analyze the state of the art of EV imaging in vivo, focusing in particular on zebrafish as a promising model to visualize, study, and characterize endogenous EVs in real-time and expand our understanding of EV biology at cellular and systems level.

Content maybe subject to copyright    Report

Citations
More filters
Journal Article
TL;DR: This study designs tetraspanin-based pH-sensitive optical reporters that detect MVB–PM fusion using live total internal reflection fluorescence and dynamic correlative light–electron microscopy and highlights the modulatory dynamics of MVB exocytosis that will help to increase the understanding of exosome physiology and identify druggable targets in exosomal pathologies.
Abstract: Exosomes are small endosome-derived extracellular vesicles implicated in cell–cell communication and are secreted by living cells when multivesicular bodies (MVBs) fuse with the plasma membrane (PM). Current techniques to study exosome physiology are based on isolation procedures after secretion, precluding direct and dynamic insight into the mechanics of exosome biogenesis and the regulation of their release. In this study, we propose real-time visualization of MVB–PM fusion to overcome these limitations. We designed tetraspanin-based pH-sensitive optical reporters that detect MVB–PM fusion using live total internal reflection fluorescence and dynamic correlative light–electron microscopy. Quantitative analysis demonstrates that MVB–PM fusion frequency is reduced by depleting the target membrane SNAREs SNAP23 and syntaxin-4 but also can be induced in single cells by stimulation of the histamine H1 receptor (H1HR). Interestingly, activation of H1R1 in HeLa cells increases Ser110 phosphorylation of SNAP23, promoting MVB–PM fusion and the release of CD63-enriched exosomes. Using this single-cell resolution approach, we highlight the modulatory dynamics of MVB exocytosis that will help to increase our understanding of exosome physiology and identify druggable targets in exosome-associated pathologies.

157 citations

Journal ArticleDOI
TL;DR: The biogenesis, release, uptake, and rupture of migrasomes are summarized and its biological roles in development, redox signalling, innate immunity and COVID-19, cardio-cerebrovascular diseases, renal diseases, and cancer biology are discussed, all of which highlight the importance of migratingasomes in modulating body homeostasis and diseases.
Abstract: Migrasomes are migration-dependent membrane-bound vesicular structures that contain cellular contents and small vesicles. Migrasomes grow on the tips or intersections of the retraction fibers after cells migrate away. The process of releasing migrasomes into the extracellular space is named as “migracytosis”. After releasing, they can be taken up by the surrounding cells, or rupture and further release their contents into the extracellular environment. Physiologically, migrasomes provide regional cues for organ morphogenesis during zebrafish gastrulation and discard the damaged mitochondria in response to mild mitochondrial stresses. Pathologically, migrasomes are released from podocyte during early podocyte stress and/or damage, from platelets after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from microglia/macrophages of the ischemic brain, and from tumor necrosis factor α (TNFα)-activated endothelial cells (ECs); thus, this newly discovered extracellular vesicle is involved in all these pathological processes. Moreover, migrasomes can modulate the proliferation of cancer cell via lateral transferring mRNA and protein. In this review, we will summarize the biogenesis, release, uptake, and rupture of migrasomes and discuss its biological roles in development, redox signalling, innate immunity and COVID-19, cardio-cerebrovascular diseases, renal diseases, and cancer biology, all of these highlight the importance of migrasomes in modulating body homeostasis and diseases.

6 citations

Journal ArticleDOI
TL;DR: A modular pipeline is developed to find publication communities with center–periphery structure of scientific publications that are linked by citations and compares its approach to communities discovered by the widely used Leiden algorithm for community finding.
Abstract: Abstract Clustering and community detection in networks are of broad interest and have been the subject of extensive research that spans several fields. We are interested in the relatively narrow question of detecting communities of scientific publications that are linked by citations. These publication communities can be used to identify scientists with shared interests who form communities of researchers. Building on the well-known k-core algorithm, we have developed a modular pipeline to find publication communities with center–periphery structure. Using a quantitative and qualitative approach, we evaluate community finding results on a citation network consisting of over 14 million publications relevant to the field of extracellular vesicles. We compare our approach to communities discovered by the widely used Leiden algorithm for community finding.

3 citations

Journal ArticleDOI
TL;DR: In this article , the authors presented their state of the art focusing on local actions and inter-tissue effects of cytokines in fish, including adipokines, myokines and osteokines.
Abstract: Control of tissue metabolism and growth involves interactions between organs, tissues, and cell types, mediated by cytokines or direct communication through cellular exchanges. Indeed, over the past decades, many peptides produced by adipose tissue, skeletal muscle and bone named adipokines, myokines and osteokines respectively, have been identified in mammals playing key roles in organ/tissue development and function. Some of them are released into the circulation acting as classical hormones, but they can also act locally showing autocrine/paracrine effects. In recent years, some of these cytokines have been identified in fish models of biomedical or agronomic interest. In this review, we will present their state of the art focusing on local actions and inter-tissue effects. Adipokines reported in fish adipocytes include adiponectin and leptin among others. We will focus on their structure characteristics, gene expression, receptors, and effects, in the adipose tissue itself, mainly regulating cell differentiation and metabolism, but in muscle and bone as target tissues too. Moreover, lipid metabolites, named lipokines, can also act as signaling molecules regulating metabolic homeostasis. Regarding myokines, the best documented in fish are myostatin and the insulin-like growth factors. This review summarizes their characteristics at a molecular level, and describes both, autocrine effects and interactions with adipose tissue and bone. Nonetheless, our understanding of the functions and mechanisms of action of many of these cytokines is still largely incomplete in fish, especially concerning osteokines (i.e., osteocalcin), whose potential cross talking roles remain to be elucidated. Furthermore, by using selective breeding or genetic tools, the formation of a specific tissue can be altered, highlighting the consequences on other tissues, and allowing the identification of communication signals. The specific effects of identified cytokines validated through in vitro models or in vivo trials will be described. Moreover, future scientific fronts (i.e., exosomes) and tools (i.e., co-cultures, organoids) for a better understanding of inter-organ crosstalk in fish will also be presented. As a final consideration, further identification of molecules involved in inter-tissue communication will open new avenues of knowledge in the control of fish homeostasis, as well as possible strategies to be applied in aquaculture or biomedicine.
Journal ArticleDOI
TL;DR: Extracellular Vesicles (EVs) are a heterogeneous class of cell-derived membrane vesicles released by various cell types that serve as mediators of intercellular signaling as discussed by the authors .
Abstract: Extracellular vesicles (EVs) are a heterogeneous class of cell-derived membrane vesicles released by various cell types that serve as mediators of intercellular signaling. When released into circulation, EVs may convey their cargo and serve as intermediaries for intracellular communication, reaching nearby cells and possibly also distant organs. In cardiovascular biology, EVs released by activated or apoptotic endothelial cells (EC-EVs) disseminate biological information at short and long distances, contributing to the development and progression of cardiovascular disease and related disorders. The significance of EC-EVs as mediators of cell–cell communication has advanced, but a thorough knowledge of the role that intercommunication plays in healthy and vascular disease is still lacking. Most data on EVs derive from in vitro studies, but there are still little reliable data available on biodistribution and specific homing EVs in vivo tissues. Molecular imaging techniques for EVs are crucial to monitoring in vivo biodistribution and the homing of EVs and their communication networks both in basal and pathological circumstances. This narrative review provides an overview of EC–EVs, trying to highlight their role as messengers of cell–cell interaction in vascular homeostasis and disease, and describes emerging applications of various imaging modalities for EVs visualization in vivo.
References
More filters
Journal ArticleDOI
TL;DR: This unit describes different approaches for exosome purification from various sources, and discusses methods to evaluate the purity and homogeneity of the purified exosomes preparations.
Abstract: Exosomes are small membrane vesicles found in cell culture supernatants and in different biological fluids. Exosomes form in a particular population of endosomes, called multivesicular bodies (MVBs), by inward budding into the lumen of the compartment. Upon fusion of MVBs with the plasma membrane, these internal vesicles are secreted. Exosomes possess a defined set of membrane and cytosolic proteins. The physiological function of exosomes is still a matter of debate, but increasing results in various experimental systems suggest their involvement in multiple biological processes. Because both cell-culture supernatants and biological fluids contain different types of lipid membranes, it is critical to perform high-quality exosome purification. This unit describes different approaches for exosome purification from various sources, and discusses methods to evaluate the purity and homogeneity of the purified exosome preparations.

4,492 citations

Journal ArticleDOI
TL;DR: Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material.
Abstract: Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively They are present in biological fluids and are involved in multiple physiological and pathological processes Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles

4,241 citations

Journal ArticleDOI
Kerstin Howe, Matthew D. Clark, Carlos Torroja1, Carlos Torroja2  +171 moreInstitutions (11)
25 Apr 2013-Nature
TL;DR: A high-quality sequence assembly of the zebrafish genome is generated, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map, providing a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebra fish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
Abstract: Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

3,573 citations

Journal ArticleDOI
TL;DR: The data show that exosome production, transfer and education of bone marrow cells supports tumor growth and metastasis, has prognostic value and offers promise for new therapeutic directions in the metastatic process.
Abstract: Tumor-derived exosomes are emerging mediators of tumorigenesis. We explored the function of melanoma-derived exosomes in the formation of primary tumors and metastases in mice and human subjects. Exosomes from highly metastatic melanomas increased the metastatic behavior of primary tumors by permanently 'educating' bone marrow progenitors through the receptor tyrosine kinase MET. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites and reprogrammed bone marrow progenitors toward a pro-vasculogenic phenotype that was positive for c-Kit, the receptor tyrosine kinase Tie2 and Met. Reducing Met expression in exosomes diminished the pro-metastatic behavior of bone marrow cells. Notably, MET expression was elevated in circulating CD45(-)C-KIT(low/+)TIE2(+) bone marrow progenitors from individuals with metastatic melanoma. RAB1A, RAB5B, RAB7 and RAB27A, regulators of membrane trafficking and exosome formation, were highly expressed in melanoma cells. Rab27A RNA interference decreased exosome production, preventing bone marrow education and reducing, tumor growth and metastasis. In addition, we identified an exosome-specific melanoma signature with prognostic and therapeutic potential comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. Our data show that exosome production, transfer and education of bone marrow cells supports tumor growth and metastasis, has prognostic value and offers promise for new therapeutic directions in the metastatic process.

3,076 citations

Journal ArticleDOI
04 Apr 2019-Cell
TL;DR: High-resolution density gradient fractionation and direct immunoaffinity capture are employed to precisely characterize the RNA, DNA, and protein constituents of exosomes and other non-vesicle material and show that small extracellular vesicles are not vehicles of active DNA release.

1,515 citations