scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Incorporating dynamic flight network in SEIR to model mobility between populations

01 Jan 2021-Applied Network Science (SpringerOpen)-Vol. 6, Iss: 1, pp 42-42
TL;DR: In this paper, the authors proposed to modify the commonly-used SEIR model to account for the dynamic flight network, by estimating the imported cases based on the air traffic volume and the test positive rate.
Abstract: Current efforts of modelling COVID-19 are often based on the standard compartmental models such as SEIR and their variations. As pre-symptomatic and asymptomatic cases can spread the disease between populations through travel, it is important to incorporate mobility between populations into the epidemiological modelling. In this work, we propose to modify the commonly-used SEIR model to account for the dynamic flight network, by estimating the imported cases based on the air traffic volume and the test positive rate. We conduct a case study based on data found in Canada to demonstrate how this modification, called Flight-SEIR, can potentially enable (1) early detection of outbreaks due to imported pre-symptomatic and asymptomatic cases, (2) more accurate estimation of the reproduction number and (3) evaluation of the impact of travel restrictions and the implications of lifting these measures. The proposed Flight-SEIR is essential in navigating through this pandemic and the next ones, given how interconnected our world has become.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors focused on studies related to the COVID-19 contagion simulation through transport networks and found 15 spread models of contagion with the SEIR model being the most widely used, followed by mathematical-based risk models.
Abstract: The COVID-19 pandemic has generated a huge volume of research from various disciplines, such as health sciences, social sciences, mathematical modeling, social network analysis, complex systems, decision-making processes, computer simulation, economics, among many others. One of the key problems has been to understand the diffusion processes of the virus, which quickly spread worldwide through transport networks, mainly air flights. Almost two years after start the pandemic, it is necessary to collect and synthesize the existing work on this matter. This work focuses on studies related to the COVID-19 contagion simulation through transport networks. In particular, we are specially interested in the different datasets and epidemiological models used. The search methodology consists of four exhaustive searches in Google Scholar carried out between January 2020 and January 2021. Of the 1786 findings, we chose 54 articles related to Covid-19 contagion modeling and simulation through transport networks. The results show 30 different data sources for the collection of air flights and 11 additional sources for maritime and land transport. These datasets are usually complemented with other data sources, local and international, with demographic information, economic data, and statistics of traceability of the pandemic. The findings also found 15 spread models of contagion, with the SEIR model being the most widely used, followed by mathematical-based risk models. This diversity of results validates the need for these types of compilation efforts since researchers do not have a single centralized repository to collect air flight data.

3 citations

Proceedings ArticleDOI
20 Aug 2021
TL;DR: In this paper, a multi-layer prediction method with a SEIRD model was proposed, which is improved from a classical SEIR model by taking the effect of vaccines into account, and a conclusion that the U.S will be able to contain its epidemic effectively by practicing the development and injection of vaccines can be inferred.
Abstract: COVID-19 is a new type of infectious disease that has been massively outbroken in December 2019. So far, with the development and promotion of the vaccines against COVID-19, the epidemic throughout the world appears to be contained. In this paper, we propose a multi-layer prediction method with a SEIRD model which is improved from a classical Susceptible-Exposed-Infected-Recovered (SEIR) model. We expand the classical model by taking the effect of vaccines into account. Furthermore, we use epidemic data accessed from the U.S. government to fit the model and visualize the results, a conclusion that the U.S. will be able to contain its epidemic effectively by practicing the development and injection of vaccines can be inferred.

1 citations

Journal ArticleDOI
TL;DR: In this article , the development of a global aircraft-based wastewater genomic surveillance network, with the busiest international airports as central nodes and continuing air travel journeys as vectors, is proposed, which requires routinely collecting aircraft wastewater samples for microbiological analysis and sequencing and linking the resulting data with associated international air traffic information.

1 citations

Journal ArticleDOI
TL;DR: In this paper , a longitudinal study aimed to assess spatiotemporal risk factors of MPX infection and predict global epidemiological trends, and the authors concluded that Northern America and Latin America are at greater risk of infection in the future.
Abstract: Background Ninety-eight percent of documented cases of the zoonotic disease human monkeypox (MPX) were reported after 2001, with especially dramatic global spread in 2022. This longitudinal study aimed to assess spatiotemporal risk factors of MPX infection and predict global epidemiological trends. Method Twenty-one potential risk factors were evaluated by correlation-based network analysis and multivariate regression. Country-level risk was assessed using a modified Susceptible-Exposed-Infectious-Removed (SEIR) model and a risk-factor-driven k-means clustering analysis. Results Between historical cases and the 2022 outbreak, MPX infection risk factors changed from relatively simple [human immunodeficiency virus (HIV) infection and population density] to multiple [human mobility, population of men who have sex with men, coronavirus disease 2019 (COVID-19) infection, and socioeconomic factors], with human mobility in the context of COVID-19 being especially key. The 141 included countries classified into three risk clusters: 24 high-risk countries mainly in West Europe and Northern America, 70 medium-risk countries mainly in Latin America and Asia, and 47 low-risk countries mainly in Africa and South Asia. The modified SEIR model predicted declining transmission rates, with basic reproduction numbers ranging 1.61–7.84 in the early stage and 0.70–4.13 in the current stage. The estimated cumulative cases in Northern and Latin America may overtake the number in Europe in autumn 2022. Conclusions In the current outbreak, risk factors for MPX infection have changed and expanded. Forecasts of epidemiological trends from our modified SEIR models suggest that Northern America and Latin America are at greater risk of MPX infection in the future.

1 citations

Journal ArticleDOI
TL;DR: Historical travel volumes, combined with data on an emerging infection, are useful to understand the behaviour of an infectious agent in regions of Canada with different connectivity and population size.
Abstract: Abstract Background The COVID-19 pandemic has challenged health services and governments in Canada and around the world. Our research aims to evaluate the effect of domestic and international air travel patterns on the COVID-19 pandemic in Canadian provinces and territories. Methods Air travel data were obtained through licensed access to the ‘BlueDot Intelligence Platform’, BlueDot Inc. Daily provincial and territorial COVID-19 cases for Canada and global figures, including mortality, cases recovered and population data were downloaded from public datasets. The effects of domestic and international air travel and passenger volume on the number of local and non-local infected people in each Canadian province and territory were evaluated with a semi-Markov model. Provinces and territories are grouped into large (>100 000 confirmed COVID-19 cases and >1 000 000 inhabitants) and small jurisdictions (≤100 000 confirmed COVID-19 cases and ≤1 000 000 inhabitants). Results Our results show a clear decline in passenger volumes from March 2020 due to public health policies, interventions and other measures taken to limit or control the spread of COVID-19. As the measures were eased, some provinces and territories saw small increases in passenger volumes, although travel remained below pre-pandemic levels. During the early phase of disease introduction, the burden of illness is determined by the connectivity of jurisdictions. In provinces with a larger population and greater connectivity, the burden of illness is driven by case importation, although local transmission rapidly replaces imported cases as the most important driver of increasing new infections. In smaller jurisdictions, a steep increase in cases is seen after importation, leading to outbreaks within the community. Conclusions Historical travel volumes, combined with data on an emerging infection, are useful to understand the behaviour of an infectious agent in regions of Canada with different connectivity and population size. Historical travel information is important for public health planning and pandemic resource allocation.

1 citations

References
More filters
Journal ArticleDOI
TL;DR: It is inferred that epidemics are already growing exponentially in multiple major cities of China with a lag time behind the Wuhan outbreak of about 1–2 weeks, and that other major Chinese cities are probably sustaining localised outbreaks.

3,938 citations

Journal ArticleDOI
TL;DR: These early estimates give an indication of the fatality ratio across the spectrum of COVID-19 disease and show a strong age gradient in risk of death.
Abstract: Background In the face of rapidly changing data, a range of case fatality ratio estimates for coronavirus disease 2019 (COVID-19) have been produced that differ substantially in magnitude. We aimed to provide robust estimates, accounting for censoring and ascertainment biases. Methods We collected individual-case data for patients who died from COVID-19 in Hubei, mainland China (reported by national and provincial health commissions to Feb 8, 2020), and for cases outside of mainland China (from government or ministry of health websites and media reports for 37 countries, as well as Hong Kong and Macau, until Feb 25, 2020). These individual-case data were used to estimate the time between onset of symptoms and outcome (death or discharge from hospital). We next obtained age-stratified estimates of the case fatality ratio by relating the aggregate distribution of cases to the observed cumulative deaths in China, assuming a constant attack rate by age and adjusting for demography and age-based and location-based under-ascertainment. We also estimated the case fatality ratio from individual line-list data on 1334 cases identified outside of mainland China. Using data on the prevalence of PCR-confirmed cases in international residents repatriated from China, we obtained age-stratified estimates of the infection fatality ratio. Furthermore, data on age-stratified severity in a subset of 3665 cases from China were used to estimate the proportion of infected individuals who are likely to require hospitalisation. Findings Using data on 24 deaths that occurred in mainland China and 165 recoveries outside of China, we estimated the mean duration from onset of symptoms to death to be 17·8 days (95% credible interval [CrI] 16·9-19·2) and to hospital discharge to be 24·7 days (22·9-28·1). In all laboratory confirmed and clinically diagnosed cases from mainland China (n=70 117), we estimated a crude case fatality ratio (adjusted for censoring) of 3·67% (95% CrI 3·56-3·80). However, after further adjusting for demography and under-ascertainment, we obtained a best estimate of the case fatality ratio in China of 1·38% (1·23-1·53), with substantially higher ratios in older age groups (0·32% [0·27-0·38] in those aged Interpretation These early estimates give an indication of the fatality ratio across the spectrum of COVID-19 disease and show a strong age gradient in risk of death. Funding UK Medical Research Council.

3,271 citations

Journal ArticleDOI
06 Mar 2020-Science
TL;DR: The results suggest that early detection, hand washing, self-isolation, and household quarantine will likely be more effective than travel restrictions at mitigating this pandemic, and sustained 90% travel restrictions to and from mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.
Abstract: Motivated by the rapid spread of coronavirus disease 2019 (COVID-19) in mainland China, we use a global metapopulation disease transmission model to project the impact of travel limitations on the national and international spread of the epidemic. The model is calibrated on the basis of internationally reported cases and shows that, at the start of the travel ban from Wuhan on 23 January 2020, most Chinese cities had already received many infected travelers. The travel quarantine of Wuhan delayed the overall epidemic progression by only 3 to 5 days in mainland China but had a more marked effect on the international scale, where case importations were reduced by nearly 80% until mid-February. Modeling results also indicate that sustained 90% travel restrictions to and from mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.

2,949 citations

DOI
16 Mar 2020
TL;DR: Neil M Ferguson, Daniel Laydon, Gemma Nedjati-Gilani, Natsuko Imai, Kylie Ainslie, Sangeeta Bhatia, Adhiratha Boonyasiri, Zulma Cucunubá, Gina Cuomo-Dannenburg, Amy Dighe, Ilaria Dorigatti, Han Fu, Katy Gaythorpe, Will Green, Arran Hamlet, Wes Hinsley, Lucy C Okell.
Abstract: The global impact of COVID-19 has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 H1N1 influenza pandemic. Here we present the results of epidemiological modelling which has informed policymaking in the UK and other countries in recent weeks. In the absence of a COVID-19 vaccine, we assess the potential role of a number of public health measures – so-called non-pharmaceutical interventions (NPIs) – aimed at reducing contact rates in the population and thereby reducing transmission of the virus. In the results presented here, we apply a previously published microsimulation model to two countries: the UK (Great Britain specifically) and the US. We conclude that the effectiveness of any one intervention in isolation is likely to be limited, requiring multiple interventions to be combined to have a substantial impact on transmission. Two fundamental strategies are possible: (a) mitigation, which focuses on slowing but not necessarily stopping epidemic spread – reducing peak healthcare demand while protecting those most at risk of severe disease from infection, and (b) suppression, which aims to reverse epidemic growth, reducing case numbers to low levels and maintaining that situation indefinitely. Each policy has major challenges. We find that that optimal mitigation policies (combining home isolation of suspect cases, home quarantine of those living in the same household as suspect cases, and social distancing of the elderly and others at most risk of severe disease) might reduce peak healthcare demand by 2/3 and deaths by half. However, the resulting mitigated epidemic would still likely result in hundreds of thousands of deaths and health systems (most notably intensive care units) being overwhelmed many times over. For countries able to achieve it, this leaves suppression as the preferred policy option. We show that in the UK and US context, suppression will minimally require a combination of social distancing of the entire population, home isolation of cases and household quarantine of their family members. This may need to be supplemented by school and university closures, though it should be recognised that such closures may have negative impacts on health systems due to increased absenteeism. The major challenge of suppression is that this type of intensive intervention package – or something equivalently effective at reducing transmission – will need to be maintained until a vaccine becomes available (potentially 18 months or more) – given that we predict that transmission will quickly rebound if interventions are relaxed. We show that intermittent social distancing – triggered by trends in disease surveillance – may allow interventions to be relaxed temporarily in relative short time windows, but measures will need to be reintroduced if or when case numbers rebound. Last, while experience in China and now South Korea show that suppression is possible in the short term, it remains to be seen whether it is possible long-term, and whether the social and economic costs of the interventions adopted thus far can be reduced.

2,908 citations

Journal ArticleDOI
01 May 2020-Science
TL;DR: Real-time mobility data from Wuhan and detailed case data including travel history are used to elucidate the role of case importation in transmission in cities across China and to ascertain the impact of control measures.
Abstract: The ongoing coronavirus disease 2019 (COVID-19) outbreak expanded rapidly throughout China. Major behavioral, clinical, and state interventions were undertaken to mitigate the epidemic and prevent the persistence of the virus in human populations in China and worldwide. It remains unclear how these unprecedented interventions, including travel restrictions, affected COVID-19 spread in China. We used real-time mobility data from Wuhan and detailed case data including travel history to elucidate the role of case importation in transmission in cities across China and to ascertain the impact of control measures. Early on, the spatial distribution of COVID-19 cases in China was explained well by human mobility data. After the implementation of control measures, this correlation dropped and growth rates became negative in most locations, although shifts in the demographics of reported cases were still indicative of local chains of transmission outside of Wuhan. This study shows that the drastic control measures implemented in China substantially mitigated the spread of COVID-19.

2,362 citations