scispace - formally typeset
Journal ArticleDOI

Incorporation of Molecular Catalysts in Metal–Organic Frameworks for Highly Efficient Heterogeneous Catalysis

Chuan-De Wu, +1 more
- 01 Apr 2017 - 
- Vol. 29, Iss: 14, pp 1605446
Reads0
Chats0
TLDR
The rational design and synthesis of MOF catalysts are discussed, along with the key factors of active sites, microenvironments, and transmission channels that lead to the distinct catalytic properties of MOf catalysts.
Abstract
Porous metal-organic frameworks (MOFs) are built from periodically alternate organic moieties and metal ions/clusters. The unique features of the open framework structures, the high surface areas, the permanent porosity, and the appropriate hydrophilic and hydrophobic pore nature mean that MOF materials are a class of ideal host matrices for immobilization of molecular catalysts. The emerging porous materials can not only retain but are also able to enhance the catalytic functions of the single individuals. MOF catalysts have the following super characters: i) uniformly dispersed catalytic sites on the pore surfaces to improve the utility, ii) appropriate hydrophilic and hydrophobic pore nature to facilitate the recognition and transportation of reactant and product molecules, iii) a collaborative microenvironment to realize synergistic catalysis, and iv) simple separation and recovery for long-term usage. Accompanying the development of the synthetic strategies and the technologies for the characterization of MOF materials, MOF catalysis has undergone an upsurge, which has transcended the stage of opportunism. Here, the rational design and synthesis of MOF catalysts are discussed, along with the key factors of active sites, microenvironments, and transmission channels that lead to the distinct catalytic properties of MOF catalysts.

read more

Citations
More filters
Journal ArticleDOI

Metal-Organic Frameworks as Platforms for Catalytic Applications.

TL;DR: An overview of recent developments achieved in MOF catalysis, including heterogeneousCatalysis, photocatalysis, and eletrocatalysis over MOFs and MOF-based materials, is provided.
Journal ArticleDOI

Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives

TL;DR: In this review, the recent advances in the application of MOFs in heterogeneous catalysis are discussed and the personal view on future research directions is wrapped up.
Journal ArticleDOI

Metal–organic framework-derived porous materials for catalysis

TL;DR: In this paper, the authors systematically summarize the versatile synthetic strategies to fabricate MOF-derived porous materials and give an overview on their recent progress on organic heterogeneous catalysis, photocatalysis and electrocatalysis.
Journal ArticleDOI

Metal-Organic Framework-Based Catalysts with Single Metal Sites.

TL;DR: This review overviews the recent developments of catalysis at single metal sites in MOF-based materials with emphasis on their structures and applications for thermocatalysis, electrocatalysis, and photocatalysis.
Journal ArticleDOI

Metal–organic frameworks: Structures and functional applications

TL;DR: An up-to-date summary of the structural and physical properties of metal-organic frameworks can be found in this article, where the structure-property relationships of MOFs are discussed.
References
More filters
Journal ArticleDOI

Metal–organic framework materials as catalysts

TL;DR: A critical review of the emerging field of MOF-based catalysis is presented and examples of catalysis by homogeneous catalysts incorporated as framework struts or cavity modifiers are presented.
Journal ArticleDOI

Metal–Organic Framework Materials as Chemical Sensors

TL;DR: The potential to computationally predict, with good accuracy, affinities of guests for host frameworks points to the prospect of routinely predesigning frameworks to deliver desired properties.
Journal ArticleDOI

Carbon Dioxide Capture in Metal–Organic Frameworks

TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Journal ArticleDOI

A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n

TL;DR: In this paper, a highly porous metal coordination polymer [Cu3(TMA)2(H2O)3]n (where TMA is benzene-1,3,5-tricarboxylate) was formed in 80 percent yield.
Related Papers (5)