scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Increasing summer drying in North American ecosystems in response to longer nonfrozen periods

16 Aug 2014-Geophysical Research Letters (John Wiley & Sons, Ltd)-Vol. 41, Iss: 15, pp 5476-5483
TL;DR: In this article, the authors estimate the overall vulnerability of North American ecosystems to warming-related seasonal shifts in hydrology through identifying robust interannual linkages between nonfrozen periods, peak-to-late summer vegetation greenness, and an indicator of drought for 1982-2010.
Abstract: In snow-dominated northern ecosystems, spring warming is predicted to decrease water availability later in the season and recent findings suggest that corresponding negative impacts on plant productivity and wildfire frequency are already observable. Here we estimate the overall vulnerability of North American ecosystems to warming-related seasonal shifts in hydrology through identifying robust interannual linkages between nonfrozen periods, peak-to-late summer vegetation greenness, and an indicator of drought for 1982–2010. Our results show that longer nonfrozen periods earlier in the year are persistently associated with declines in peak-to-late summer greenness and moisture availability across large portions of North America. Hereby, vulnerabilities increase markedly across the dominant land covers with decreasing annual precipitation rates, lowering contributions of summer rainfall, and increasing altitude. The implications are that in a warmer world, seasonal hydrological shifts may emerge as a leading factor for summer drought in relatively dry temperate-forested ecosystems and across the northern high latitudes.
Citations
More filters
Journal ArticleDOI
TL;DR: The results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake, and suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere–atmosphere feedbacks.
Abstract: The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.

307 citations

Journal ArticleDOI
03 Oct 2018-Nature
TL;DR: For many northern ecosystems the benefits of warmer springs on growing-season ecosystem productivity are effectively compensated for by the accumulation of seasonal water deficits, despite the fact that northern ecosystems are thought to be largely temperature- and radiation-limited.
Abstract: Climate change is shifting the phenological cycles of plants1, thereby altering the functioning of ecosystems, which in turn induces feedbacks to the climate system2. In northern (north of 30° N) ecosystems, warmer springs lead generally to an earlier onset of the growing season3,4 and increased ecosystem productivity early in the season5. In situ6 and regional7–9 studies also provide evidence for lagged effects of spring warmth on plant productivity during the subsequent summer and autumn. However, our current understanding of these lagged effects, including their direction (beneficial or adverse) and geographic distribution, is still very limited. Here we analyse satellite, field-based and modelled data for the period 1982–2011 and show that there are widespread and contrasting lagged productivity responses to spring warmth across northern ecosystems. On the basis of the observational data, we find that roughly 15 per cent of the total study area of about 41 million square kilometres exhibits adverse lagged effects and that roughly 5 per cent of the total study area exhibits beneficial lagged effects. By contrast, current-generation terrestrial carbon-cycle models predict much lower areal fractions of adverse lagged effects (ranging from 1 to 14 per cent) and much higher areal fractions of beneficial lagged effects (ranging from 9 to 54 per cent). We find that elevation and seasonal precipitation patterns largely dictate the geographic pattern and direction of the lagged effects. Inadequate consideration in current models of the effects of the seasonal build-up of water stress on seasonal vegetation growth may therefore be able to explain the differences that we found between our observation-constrained estimates and the model-constrained estimates of lagged effects associated with spring warming. Overall, our results suggest that for many northern ecosystems the benefits of warmer springs on growing-season ecosystem productivity are effectively compensated for by the accumulation of seasonal water deficits, despite the fact that northern ecosystems are thought to be largely temperature- and radiation-limited10.

218 citations

Sebastian Wolf1
23 Jun 2016
TL;DR: In this article, the authors quantify the impact of extreme climate events on the carbon cycle and show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake.
Abstract: Significance Carbon uptake by terrestrial ecosystems mitigates the impact of anthropogenic fossil fuel emissions on atmospheric CO2 concentrations, but the strength of this carbon sink is highly sensitive to large-scale extreme climate events. In 2012, the United States experienced the most severe drought since the Dust Bowl period, along with the warmest spring on record. Here, we quantify the impact of this climate anomaly on the carbon cycle. Our results show that warming-induced earlier vegetation activity increased spring carbon uptake, and thus compensated for reduced carbon uptake during the summer drought in 2012. This compensation, however, came at the cost of soil moisture depletion from increased spring evapotranspiration that likely enhanced summer heating through land-atmosphere coupling. The global terrestrial carbon sink offsets one-third of the world’s fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere–atmosphere feedbacks.

215 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated vegetation response to climate change exhibited by temperature, soil moisture, and solar radiation at Northern Hemisphere (NH) scale during the growing season and seasonal periods by analyzing satellite observations of vegetation activity and climatic data.

113 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the first global assessment of recent tree mortality attributed to drought and heat stress and identify key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system.

5,811 citations

Journal ArticleDOI
TL;DR: In this paper, an updated gridded climate dataset (referred to as CRU TS3.10) from monthly observations at meteorological stations across the world's land areas is presented.
Abstract: This paper describes the construction of an updated gridded climate dataset (referred to as CRU TS3.10) from monthly observations at meteorological stations across the world's land areas. Station anomalies (from 1961 to 1990 means) were interpolated into 0.5° latitude/longitude grid cells covering the global land surface (excluding Antarctica), and combined with an existing climatology to obtain absolute monthly values. The dataset includes six mostly independent climate variables (mean temperature, diurnal temperature range, precipitation, wet-day frequency, vapour pressure and cloud cover). Maximum and minimum temperatures have been arithmetically derived from these. Secondary variables (frost day frequency and potential evapotranspiration) have been estimated from the six primary variables using well-known formulae. Time series for hemispheric averages and 20 large sub-continental scale regions were calculated (for mean, maximum and minimum temperature and precipitation totals) and compared to a number of similar gridded products. The new dataset compares very favourably, with the major deviations mostly in regions and/or time periods with sparser observational data. CRU TS3.10 includes diagnostics associated with each interpolated value that indicates the number of stations used in the interpolation, allowing determination of the reliability of values in an objective way. This gridded product will be publicly available, including the input station series (http://www.cru.uea.ac.uk/ and http://badc.nerc.ac.uk/data/cru/). © 2013 Royal Meteorological Society

5,552 citations

Journal ArticleDOI
19 Aug 2011-Science
TL;DR: The total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks, with tropical estimates having the largest uncertainties.
Abstract: The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year–1) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year–1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year–1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year–1. Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year–1, with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.

4,948 citations

Journal ArticleDOI
18 Aug 2006-Science
TL;DR: It is shown that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons.
Abstract: Western United States forest wildfire activity is widely thought to have increased in recent decades, yet neither the extent of recent changes nor the degree to which climate may be driving regional changes in wildfire has been systematically documented. Much of the public and scientific discussion of changes in western United States wildfire has focused instead on the effects of 19th- and 20th-century land-use history. We compiled a comprehensive database of large wildfires in western United States forests since 1970 and compared it with hydroclimatic and land-surface data. Here, we show that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons. The greatest increases occurred in mid-elevation, Northern Rockies forests, where land-use histories have relatively little effect on fire risks and are strongly associated with increased spring and summer temperatures and an earlier spring snowmelt.

4,701 citations