scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Independent coordinates for strange attractors from mutual information.

01 Feb 1986-Physical Review A (American Physical Society)-Vol. 33, Iss: 2, pp 1134-1140
TL;DR: In this paper, the mutual information I is examined for a model dynamical system and for chaotic data from an experiment on the Belousov-Zhabotinskii reaction.
Abstract: The mutual information I is examined for a model dynamical system and for chaotic data from an experiment on the Belousov-Zhabotinskii reaction. An N logN algorithm for calculating I is presented. As proposed by Shaw, a minimum in I is found to be a good criterion for the choice of time delay in phase-portrait reconstruction from time-series data. This criterion is shown to be far superior to choosing a zero of the autocorrelation function.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.
Abstract: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented, with emphasis on comparisons between theory and quantitative experiments. Examples include patterns in hydrodynamic systems such as thermal convection in pure fluids and binary mixtures, Taylor-Couette flow, parametric-wave instabilities, as well as patterns in solidification fronts, nonlinear optics, oscillatory chemical reactions and excitable biological media. The theoretical starting point is usually a set of deterministic equations of motion, typically in the form of nonlinear partial differential equations. These are sometimes supplemented by stochastic terms representing thermal or instrumental noise, but for macroscopic systems and carefully designed experiments the stochastic forces are often negligible. An aim of theory is to describe solutions of the deterministic equations that are likely to be reached starting from typical initial conditions and to persist at long times. A unified description is developed, based on the linear instabilities of a homogeneous state, which leads naturally to a classification of patterns in terms of the characteristic wave vector q0 and frequency ω0 of the instability. Type Is systems (ω0=0, q0≠0) are stationary in time and periodic in space; type IIIo systems (ω0≠0, q0=0) are periodic in time and uniform in space; and type Io systems (ω0≠0, q0≠0) are periodic in both space and time. Near a continuous (or supercritical) instability, the dynamics may be accurately described via "amplitude equations," whose form is universal for each type of instability. The specifics of each system enter only through the nonuniversal coefficients. Far from the instability threshold a different universal description known as the "phase equation" may be derived, but it is restricted to slow distortions of an ideal pattern. For many systems appropriate starting equations are either not known or too complicated to analyze conveniently. It is thus useful to introduce phenomenological order-parameter models, which lead to the correct amplitude equations near threshold, and which may be solved analytically or numerically in the nonlinear regime away from the instability. The above theoretical methods are useful in analyzing "real pattern effects" such as the influence of external boundaries, or the formation and dynamics of defects in ideal structures. An important element in nonequilibrium systems is the appearance of deterministic chaos. A greal deal is known about systems with a small number of degrees of freedom displaying "temporal chaos," where the structure of the phase space can be analyzed in detail. For spatially extended systems with many degrees of freedom, on the other hand, one is dealing with spatiotemporal chaos and appropriate methods of analysis need to be developed. In addition to the general features of nonequilibrium pattern formation discussed above, detailed reviews of theoretical and experimental work on many specific systems are presented. These include Rayleigh-Benard convection in a pure fluid, convection in binary-fluid mixtures, electrohydrodynamic convection in nematic liquid crystals, Taylor-Couette flow between rotating cylinders, parametric surface waves, patterns in certain open flow systems, oscillatory chemical reactions, static and dynamic patterns in biological media, crystallization fronts, and patterns in nonlinear optics. A concluding section summarizes what has and has not been accomplished, and attempts to assess the prospects for the future.

6,145 citations

Journal ArticleDOI
TL;DR: Two classes of improved estimators for mutual information M(X,Y), from samples of random points distributed according to some joint probability density mu(x,y), based on entropy estimates from k -nearest neighbor distances are presented.
Abstract: We present two classes of improved estimators for mutual information M(X,Y), from samples of random points distributed according to some joint probability density mu(x,y). In contrast to conventional estimators based on binnings, they are based on entropy estimates from k -nearest neighbor distances. This means that they are data efficient (with k=1 we resolve structures down to the smallest possible scales), adaptive (the resolution is higher where data are more numerous), and have minimal bias. Indeed, the bias of the underlying entropy estimates is mainly due to nonuniformity of the density at the smallest resolved scale, giving typically systematic errors which scale as functions of k/N for N points. Numerically, we find that both families become exact for independent distributions, i.e. the estimator M(X,Y) vanishes (up to statistical fluctuations) if mu(x,y)=mu(x)mu(y). This holds for all tested marginal distributions and for all dimensions of x and y. In addition, we give estimators for redundancies between more than two random variables. We compare our algorithms in detail with existing algorithms. Finally, we demonstrate the usefulness of our estimators for assessing the actual independence of components obtained from independent component analysis (ICA), for improving ICA, and for estimating the reliability of blind source separation.

3,224 citations

Journal ArticleDOI
01 Jan 1994

3,164 citations

Journal ArticleDOI
TL;DR: A new method for calculating the largest Lyapunov exponent from an experimental time series is presented that is fast, easy to implement, and robust to changes in the following quantities: embedding dimension, size of data set, reconstruction delay, and noise level.

2,942 citations

Journal ArticleDOI
TL;DR: This paper investigates the application of the mutual information criterion to evaluate a set of candidate features and to select an informative subset to be used as input data for a neural network classifier.
Abstract: This paper investigates the application of the mutual information criterion to evaluate a set of candidate features and to select an informative subset to be used as input data for a neural network classifier. Because the mutual information measures arbitrary dependencies between random variables, it is suitable for assessing the "information content" of features in complex classification tasks, where methods bases on linear relations (like the correlation) are prone to mistakes. The fact that the mutual information is independent of the coordinates chosen permits a robust estimation. Nonetheless, the use of the mutual information for tasks characterized by high input dimensionality requires suitable approximations because of the prohibitive demands on computation and samples. An algorithm is proposed that is based on a "greedy" selection of the features and that takes both the mutual information with respect to the output class and with respect to the already-selected features into account. Finally the results of a series of experiments are discussed. >

2,423 citations


Cites methods from "Independent coordinates for strange..."

  • ...For example Fraser's method (see [6]), that is a computationally efficient algorithm for calculating the MI, requires for its convergence a number of samples " in the millions " when the number of features in the input vector is larger than 3 or 4, clearly an exorbitant number for " real world "…...

    [...]