scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Individual Behavior and Group Membership

TL;DR: In this paper, the saliency of group membership was investigated in two strategic games, the Battle of the Sexes and Prisoner's Dilemma, and it was shown that saliency affects the perception of the environment.
Abstract: People who are members of a group and identify with it behave differently from people who perceive themselves as isolated individuals. This difference depends on two main factors. First, preferences over outcomes change with the degree of identification with the group. Second, this identification depends on the saliency of the group structure. This paper tests these hypotheses and shows that group membership affects preferences over outcomes, and saliency of the group affects the perception of the environment. In two strategic environments, Battle of the Sexes and Prisoner's Dilemma, we create groups by allocating subjects to be Row or Column players. We manipulate the saliency of group membership by letting a player's own group watch as a passive audience as decisions are made, and by making part of the payoff common for members of the group. There is a strong and significant effect of group membership: It increases the aggressive stance of the hosts (people who have their group members in the audience), and reduces the one of the guests. The effect on outcomes depends on the game: In the Battle of the Sexes, the aggressiveness of hosts leads to more coordination; in the Prisoner's Dilemma, it leads to less cooperation. In the first case efficiency is increased, while in the second it is diminished. We also test for differences between in-group and out-group behavior in Prisoner's Dilemma games. In contrast to the minimal-group paradigm of the social-psychology literature, minimal groups do not affect behavior in our strategic environment. We see strong differences between in-group and out-group behavior only when we increase the saliency of group membership by having a degree of common payoffs.

Summary (1 min read)

INSTRUCTIONS (room R)

  • They have been randomly divided into two rooms, each with 10 people.
  • These are actual dollars that will be paid in cash.
  • All people in the room (except for the person from the other room) will be able to watch the decider who belongs to their room make his or her choice (however, no verbal comments are permitted).
  • Your green numbers indicate the rounds during which it will be your turn to make a decision in the room where you are now (room R).

INSTRUCTIONS

  • Thank you for participating in this experiment.
  • There are 20 people participating in this session.
  • There will be 10 rounds in this session, and each person will make a decision in each round.
  • In some periods, you will be paired with someone in your color group, while in other periods you will be paired with someone in the other color group.
  • Each person will be making a simultaneous choice between A and B in the following decision matrix:.

Did you find this useful? Give us your feedback

Content maybe subject to copyright    Report

APPENDIX A: Instructions
(Prisoner’s Dilemma)
INSTRUCTIONS (room R)
Thank you for participating in this experiment. You will receive $5 for your participation, in addition to other
money to be paid as a result of decisions made in the experiment.
There are 20 people participating in this session. They have been randomly divided into two rooms, each with 10
people. You are in room R, this means you are a Row decider.
There will be ten rounds in this session
, and each person will make two decisions, one in each room. You have a
card with a green number and a card with a (different) yellow number. These numbers will determine when and
where you make decisions.
Your green number indicates the round during which it will be your turn to make a decision in the room where
you are now (room R).
Your yellow number indicates the round during which it will be your turn to go to the other room (room C) and
make a decision there.
In each round there are two people making a decision. Each person will be making a simultaneous choice between A
and B in the following decision matrix:
Column
A B
A 5 , 5 1 , 7
Row
B 7 , 1 2 , 2
In each cell, the first number represents the outcome for the Row decider and the second number represents the
outcome for the Column decider.
Thus, if both people choose A, the Row decider receives 5 and the Column decider receives 5. If both people choose
B, the Row decider receives 2 and the Column decider receives 2. If the Row decider chooses A and the Column
decider chooses B, the Row decider receives 1 and the Column decider receives 7. If the Row decider chooses B and
the Column decider chooses A, the Row decider receives 7 and the Column decider receives 1.
The other nine members of each room also have a financial stake in the outcome – each person not making a
decision receives 1/3 of the amount shown for the realized outcome.
Thus, if both deciders choose A, every inactive person in room R receives 5/3 and every inactive person from room
C receives 5/3. If both deciders choose B, every inactive person from room R receives 2/3 and every inactive person
from room C receives 2/3. If the Row decider chooses A and the Column decider chooses B, every inactive person
from room R receives 1/3 and every inactive person from room R receives 7/3. If the Row decider chooses B and the
Column decider chooses A, every inactive person from room R receives 7/3 and every inactive person from room R
receives 1/3.
Each unit is worth $0.50 in actual money (2 units = $1) that will be paid in cash at the end of the experiment.
All people in the room (except for the person from the other room) will be able to watch the decider who belongs to
their room make his or her choice (however, no verbal comments are permitted).
The decision of the person who walks into the room, on the other hand, is made privately.

2
The outcome of the joint decision is immediately revealed to all people in the room.
After the 10 rounds are completed, we will total each person’s earnings (from the outcomes of the two self-made
decisions, as well as the other 18 outcomes), add the $5 show-up fee, and pay each person individually and
privately, using the numbers on your two cards to identify your decisions.
Please feel free to ask questions.

3
(Battle of the Sexes)
INSTRUCTIONS (room R)
Thank you for participating in this experiment. You will receive $5 for your participation, in addition to other
money to be paid as a result of decisions made in the experiment.
There are 20 people participating in this session. They have been randomly divided into two rooms, each with 10
people. You are in room R, this means you are a Row decider.
There will be ten rounds in this session
, and each person will make two decisions, one in each room. You have a
card with a green number and a card with a (different) yellow number. These numbers will determine when and
where you make decisions.
Your green number indicates the round during which it will be your turn to make a decision in the room where
you are now (room R).
Your yellow number indicates the round during which it will be your turn to go to the other room (room C) and
make a decision there.
In each round there are two people making a decision. Each person will be making a simultaneous choice between A
and B in the following decision matrix:
Column
A B
A 3 , 1 0 , 0
Row
B 0 , 0 1 , 3
In each cell, the first number represents the outcome for the decider Row and the second number represents the
outcome for the decider Column.
Thus, if both people choose A, the decider Row receives $3 and the decider Column receives $1. If both people
choose B, the decider Row receives $1 and the decider Column receives $3. If non-identical letters are chosen, each
decider receives 0. These are actual dollars that will be paid in cash.
The other nine members of each room also have a financial stake in the outcome – each person not making a
decision receives 1/3 of the amount shown for the realized outcome.
Thus, if both deciders choose A, every person in room R receives $1 and every person in room C receives $1/3. If
both deciders choose B, every person in room R receives $1/3 and every person in room C receives $1. If non-
identical letters are chosen, everyone receives 0. These are also actual dollars that will be paid in cash.
All people in the room (except for the person from the other room) will be able to watch the decider who belongs to
their room make his or her choice (however, no verbal comments are permitted).
The decision of the person who walks into the room, on the other hand, is made privately.
The outcome of the joint decision is immediately revealed to all people in the room.
After the 10 rounds are completed, we will total each person’s earnings (from the outcomes of the two self-made
decisions, as well as the other 18 outcomes), add the $5 show-up fee, and pay each person individually and
privately, using the numbers on your two cards to identify your decisions.
Please feel free to ask questions.

4
(Battle of the Sexes: No Shared payoff)
INSTRUCTIONS (room R)
Thank you for participating in this experiment. You will receive $8 for your participation, in addition to other
money to be paid as a result of decisions made in the experiment.
There are 20 people participating in this session. They have been randomly divided into two rooms, each with 10
people. You are in room R, this means you are a Row decider.
There will be 20 rounds in this session
, and each person will make four decisions, two in each room. You have a two
card with green numbers and two cards with (different) yellow numbers. These numbers will determine when and
where you make decisions.
Your green numbers indicate the rounds during which it will be your turn to make a decision in the room where
you are now (room R).
Your yellow numbers indicate the rounds during which it will be your turn to go to the other room (room C) and
make a decision there.
In each round there are two people making a decision in each room. Each person will be making a simultaneous
choice between A and B in the following decision matrix:
Column
A B
A 3 , 1 0 , 0
Row
B 0 , 0 1 , 3
In each cell, the first number represents the outcome for the Row decider and the second number represents the
outcome for the Column decider.
Thus, if both people choose A, the Row decider receives 3 and the Column decider receives 1. If both people
choose B, the Row decider receives 1 and the Column decider receives 3. If the Row decider chooses A and the
Column decider chooses B, the Row decider receives 0 and the Column decider receives 0. If the Row decider
chooses B and the Column decider chooses A, the Row decider receives 0 and the Column decider receives 0. The
payment to the other people in the room is not affected by what the two people playing choose to do.
Each unit is worth $1 in actual money that will be paid in cash at the end of the experiment.
All people in the room (except for the person from the other room) will be able to watch the decider who belongs to
their room make his or her choice (however, no verbal comments are permitted).
The decision of the person who walks into the room, on the other hand, is made privately.
The outcome of the joint decision is immediately revealed to all people in the room.
After the 20 rounds are completed, we will total each person’s earnings and pay each person individually and
privately, using the numbers on your four cards to identify your decisions.
Please feel free to ask questions.

5
(Split audience)
INSTRUCTIONS (room R)
Thank you for participating in this experiment. You will receive $5 for your participation, in addition to other
money to be paid as a result of decisions made in the experiment.
There are 32 people participating in this session. They have been randomly divided into two rooms, each with 16
people. You are in room R, this means you are a member of the Row group.
Half of the people in this room will function as the audience and the other half of the people in this room will make
decisions. The people in the audience will remain in Room R, while the deciders will wait in another room until it is
time for their decisions.
There will be eight rounds in this session
, and each non-audience person will make two decisions, one in each room.
Such people will have a card with a green number and a card with a (different) yellow number. These numbers will
determine when and where they shall make decisions.
For the deciders:
The green number indicates the round during which it will be time to make a decision in the room where you are
now (room R).
The yellow number indicates the round during which it will be time to go to the other room (room C) and make a
decision there.
In each round there are two people making a decision in each room. Each person will be making a simultaneous
choice between A and B in the following decision matrix:
Column
A B
A 3 , 1 0 , 0
Row
B 0 , 0 1 , 3
In each cell, the first number represents the outcome for the decider Row and the second number represents the
outcome for the decider Column.
The other 15 members of each room also have a financial stake in the outcome – each person not making a decision
receives 1/3 of the amount shown for the realized outcome.
Thus, if both deciders choose A, the Row decider receives $3 and the Column decider receives $1; every non-
decider in the Row group receives $1 and every non-decider in the Column group receives $1/3. If both deciders
choose B, the Row decider receives $1 and the Column decider receives $3; every non-decider in the Row group
receives $1/3 and every non-decider in the Column group receives $1. If non-identical letters are chosen, everyone
receives 0. These are actual dollars that will be paid in cash.
Each person making a decision in the room will pass, face down, one of the decision cards to the experimenter, who
will reveal the choices when both cards have been passed. All people in the room will be able to observe the
outcome. However, no verbal comments are permitted at any time during the experiment.
After the eight rounds are completed, we will total each person’s earnings, add the $5 show-up fee, and pay each
person individually and privately, using the numbers on your two cards to identify your decisions. Audience
members receive an extra $1.
Please feel free to ask questions.

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the determinants of the optimal percentage that private investors seek to invest in a socially responsible (SR) way when forming their portfolio were examined, and the results showed that well-educated women and slightly younger persons sought to invest a higher percentage of their portfolio socially responsibly.
Abstract: This article examines the determinants of the optimal percentage that private investors seek to invest in a socially responsible (SR) way when forming their portfolio. By conducting a global online survey in English, German and French, we find indications that it is sufficient for the majority of investors to have a certain amount of their budget invested sustainably. Accordingly, the optimal proportion tends to be lower the higher the available investment volume is. In addition, the non-financial utility derived from SR investments appears to be independent of the form of financing the investor provides. Moreover, the results show that well-educated women and slightly younger persons seek to invest a higher percentage of their portfolio socially responsibly.

24 citations

Posted Content
TL;DR: In this article, the authors present an experiment on the determinants of whether alliances break up and fight internally after having defeated a joint enemy, and they find that if peaceful sharing yields an asymmetric rent distribution, this increases the likelihood of fighting.
Abstract: Victorious alliances often fight about the spoils of war. This paper presents an experiment on the determinants of whether alliances break up and fight internally after having defeated a joint enemy. First, if peaceful sharing yields an asymmetric rent distribution, this increases the likelihood of fighting. In turn, anticipation of the higher likelihood of internal fight reduces the alliance’s ability to succeed against the outside enemy. Second, the option to make non-binding declarations on non-aggression in the relationship between alliance members does not make peaceful settlement within the alliance more likely. Third, higher differences in the alliance players’ contributions to alliance effort lead to more internal conflict and more intense fighting.

23 citations

Journal ArticleDOI
TL;DR: This paper studied the impact of social identity on worker competition by exploiting the exogenous variations in workers' origins and the well-documented social divide between urban resident workers and rural migrant workers in large urban Chinese firms.
Abstract: We study the impact of social identity on worker competition by exploiting the exogenous variations in workers' origins and the well-documented social divide between urban resident workers and rural migrant workers in large urban Chinese firms. We analyze data on weekly output, individual characteristics, and coworker composition for all weavers in an urban Chinese textile firm between April 2003 and March 2004. The firm's relative performance incentive scheme rewards a worker for outperforming her coworkers. We find that a worker does not act on the monetary incentives to outperform coworkers who share the same social identity, but does aggressively compete against coworkers with a different social identity. Our results highlight the important role of social identity in overcoming self-interest and enhancing intergroup competitions.

23 citations


Cites background from "Individual Behavior and Group Membe..."

  • ...2A series of lab experiments create artificial affiliations with“minimal groups”and find that they generate differential behaviors toward in-group versus out-group members (Bernhard et al., 2006; Charness et al., 2007; Chen and Li, 2009)....

    [...]

  • ...A series of lab experiments have shown that identity and affliation with“minimal groups”artificially created in a lab setting could generate powerful incentives for prosocial and altruistic behaviors towards other members within the same group (Bernhard et al., 2006; Charness et al., 2007; Chen and Li, 2009) as well as intensified and potentially harmful competitions across groups (Goette et al....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors investigate how information about the preferences of others affects the persistence of "bad" social norms, and they find clear support for the pluralistic ignorance perspective, and also the strength of social interactions is important for a bad norm to persist.
Abstract: We investigate how information about the preferences of others affects the persistence of ‘bad’ social norms. One view is that bad norms thrive even when people are informed of the preferences of others, since the bad norm is an equilibrium of a coordination game. The other view is based on pluralistic ignorance, in which uncertainty about others’ preferences is crucial. In an experiment, we find clear support for the pluralistic ignorance perspective . In addition, the strength of social interactions is important for a bad norm to persist. These findings help in understanding the causes of such bad norms, and in designing interventions to change them.

23 citations

Journal ArticleDOI
TL;DR: It is shown that shared intentionality was the mechanism driving the increase in helping between in-group players over out-groups players at a cost to themselves, which point to a probable psychological source of the variation in cooperation humans display.
Abstract: While we know that the degree to which humans are able to cooperate is unrivalled by other species, the variation humans actually display in their cooperative behaviour has yet to be fully explained. This may be because research based on experimental game-theoretical studies neglects fundamental aspects of human sociality and psychology, namely social interaction and language. Using a new optimal foraging game loosely modelled on the prisoner's dilemma, the egg hunt, we categorized players as either in-group or out-group to each other and studied their spontaneous language usage while they made interactive, potentially cooperative decisions. Both shared group membership and the possibility to talk led to increased cooperation and overall success in the hunt. Notably, analysis of players' conversations showed that in-group members engaged more in shared intentionality, the human ability to both mentally represent and then adopt another's goal, whereas out-group members discussed individual goals more. Females also helped more and displayed more shared intentionality in discussions than males. Crucially, we show that shared intentionality was the mechanism driving the increase in helping between in-group players over out-group players at a cost to themselves. By studying spontaneous language during social interactions and isolating shared intentionality as the mechanism underlying successful cooperation, the current results point to a probable psychological source of the variation in cooperation humans display.

23 citations


Cites background from "Individual Behavior and Group Membe..."

  • ...[7,8]), even extending to increased cooperation within groups that are randomly formed [9]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a self-categorization theory is proposed to discover the social group and the importance of social categories in the analysis of social influence, and the Salience of social Categories is discussed.
Abstract: 1. Introducing the Problem: Individual and Group 2. Rediscovering the Social Group 3. A Self-Categorization Theory 4. The Analysis of Social Influence 5. Social Identity 6. The Salience of Social Categories 7. Social Identity and Group Polarization 8. Crowd Behaviour as Social Action 9. Conclusion.

8,872 citations

Journal ArticleDOI
TL;DR: This article showed that ethnic diversity helps explain cross-country differences in public policies and other economic indicators in Sub-Saharan Africa, and that high ethnic fragmentation explains a significant part of most of these characteristics.
Abstract: Explaining cross-country differences in growth rates requires not only an understanding of the link between growth and public policies, but also an understanding of why countries choose different public policies. This paper shows that ethnic diversity helps explain cross-country differences in public policies and other economic indicators. In the case of Sub-Saharan Africa, economic growth is associated with low schooling, political instability, underdeveloped financial systems, distorted foreign exchange markets, high government deficits, and insufficient infrastructure. Africa's high ethnic fragmentation explains a significant part of most of these characteristics.

5,648 citations


"Individual Behavior and Group Membe..." refers background in this paper

  • ...1 Some notable exceptions include Akerlof and Kranton (2000), Alesina et alii (2003), and Easterly and Levine (1997)....

    [...]

Book
01 Jan 1911
TL;DR: The Taylor System as discussed by the authors was developed as a system for increasing productivity in industry, and its principles have been applied to all kinds of large-scale enterprises, including operations with departments and agencies of the federal government.
Abstract: This brief essay by the founder of scientific management has served for nearly a century as a primer for administrators and for students of managerial techniques. Although scientific management was developed primarily as a system for increasing productivity in industry, its principles have been applied to all kinds of large-scale enterprises, including operations with departments and agencies of the federal government. It is in this volume that Frederick Winslow Taylor gave the theory of scientific management its clearest airing. Born in 1856, Taylor began work at age eighteen as an apprentice to a pattern-maker and as a machinist. A few years later he joined the Midvale Steel Company as a laborer, and in eight years rose to chief engineer. During this time he developed and tested what he called the "task system," which became known as the Taylor System and eventually as scientific management. He made careful experiments to determine the best way of performing each operation and the amount of time it required, analyzing the materials, tools, and work sequence, and establishing a clear division of labor between management and workers. His experiments laid the groundwork for the principles that are expounded in this essay, which was first published in 1911.

5,361 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider how identity, a person's sense of self, affects economic outcomes and incorporate the psychology and sociology of identity into an economic model of behavior, and construct a simple game-theoretic model showing how identity can affect individual interactions.
Abstract: This paper considers how identity, a person's sense of self, affects economic outcomes. We incorporate the psychology and sociology of identity into an economic model of behavior. In the utility function we propose, identity is associated with different social categories and how people in these categories should behave. We then construct a simple game-theoretic model showing how identity can affect individual interactions. The paper adapts these models to gender discrimination in the workplace, the economics of poverty and social exclusion, and the household division of labor. In each case, the inclusion of identity substantively changes conclusions of previous economic analysis.

4,825 citations

Frequently Asked Questions (1)
Q1. What are the contributions in this paper?

In this paper, if both people choose A, the Row decider receives 5 and the Column deciders receives 5.