scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Induced protein degradation: an emerging drug discovery paradigm

01 Feb 2017-Nature Reviews Drug Discovery (Nature Research)-Vol. 16, Iss: 2, pp 101-114
TL;DR: Induced protein degradation has the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Abstract: Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This approach may be a significant technique to complement traditional drugs and genetic ablation and will be more widely used for drug discovery and chemical biology studies in the future.
Abstract: In addition to traditional drugs, such as enzyme inhibitors, receptor agonists/antagonists, and protein-protein interaction inhibitors as well as genetic technology, such as RNA interference and the CRISPR/Cas9 system, protein knockdown approaches using proteolysis-targeting chimeras (PROTACs) have attracted much attention. PROTACs, which induce selective degradation of their target protein via the ubiquitin-proteasome system, are useful for the down-regulation of various proteins, including disease-related proteins and epigenetic proteins. Recent reports have shown that chemical protein knockdown is possible not only in cells, but also in vivo and this approach is expected to be used as the therapeutic strategy for several diseases. Thus, this approach may be a significant technique to complement traditional drugs and genetic ablation and will be more widely used for drug discovery and chemical biology studies in the future. In this personal account, a history of chemical protein knockdown is introduced, and its features, recent progress in the epigenetics field, and future outlooks are discussed.

31 citations

Journal ArticleDOI
TL;DR: The role of TRIB proteins are reviewed as promising therapeutic targets, with an emphasis on their role in cancer, and as biomarkers, with potential application across diverse pathological processes.
Abstract: Advances in the understanding of the Tribbles family of pseudokinases (TRIB1, TRIB2 and TRIB3) reveal these proteins as potentially valuable biomarkers of disease diagnosis, prognosis, prediction and clinical strategy. In their role as signalling mediators and scaffolding proteins, TRIBs lead to changes in protein stability and activity, which impact on diverse cellular processes such as proliferation, differentiation, cell cycle and cell death. We review the role of TRIB proteins as promising therapeutic targets, with an emphasis on their role in cancer, and as biomarkers, with potential application across diverse pathological processes.

31 citations

Journal ArticleDOI
TL;DR: This perspective provides a guide for medicinal chemists covering contemporary probe and lead generation approaches and discusses the strengths and limitations of each strategy.
Abstract: With the rise of novel biology and high potential target identification technologies originating from advances in genomics, medicinal chemists are progressively facing targets of increasing complexity and often unprecedented. Novel hit finding technologies, combined with a wider choice of drug modalities, has resulted in a unique repertoire of options to address these challenging targets and to identify suitable starting points for optimization. Furthermore, innovative solutions originating from a range of academic groups and biotech companies require new types of collaborative models to leverage and integrate them in the drug discovery process. This perspective provides a guide for medicinal chemists covering contemporary probe and lead generation approaches and discusses the strengths and limitations of each strategy. Moreover, the expansion of strategies to modulate proteins creates the opportunity of a modality-agnostic and mode-of-action centric hit finding paradigm.

31 citations

Journal ArticleDOI
01 Mar 2021
TL;DR: It is found that tumors expressing low CDK6 rely on CDK4 function, and are exquisitely sensitive toCDK4/6i, and the need for novel inhibitors targeting the CDK 4/ 6i-resistant, thermostable form of CDK 6 for application as cancer therapeutics is needed.
Abstract: Cyclin-dependent kinases (CDKs) 4 and 6 inhibitors (CDK4/6is) are effective in metastatic breast cancer, but they have been only modestly effective in most other tumor types. Here we show that tumors expressing low CDK6 rely on CDK4 function and are exquisitely sensitive to CDK4/6is. In contrast, tumor cells expressing both CDK4 and CDK6 have increased reliance on CDK6 to ensure cell cycle progression. We discovered that CDK4/6is and CDK4/6 degraders potently bind and inhibit CDK6 selectively in tumors in which CDK6 is highly thermo-unstable and strongly associated with the HSP90–CDC37 complex. In contrast, CDK4/6is and CDK4/6 degraders are ineffective in antagonizing tumor cells expressing thermostable CDK6, due to their weaker binding to CDK6 in these cells. Thus, we uncover a general mechanism of intrinsic resistance to CDK4/6is and CDK4/6i-derived degraders and the need for new inhibitors targeting the CDK4/6i-resistant, thermostable form of CDK6 for application as cancer therapeutics. Poulikakos and colleagues demonstrate that thermostable CDK6 complexes promote resistance to therapeutic targeting of CDK4/6 in cancer.

31 citations

Journal ArticleDOI
TL;DR: A focused review of control mechanisms that help modulate the activation and deactivation of gene transcription specifically through histone acetylation writers and readers in cancer, discussed in the context of acute leukemia.
Abstract: Chromatin packaging of DNA provides a framework for transcriptional regulation. Modifications to DNA and histone proteins in nucleosomes lead to conformational changes, alterations in the recruitment of transcriptional complexes, and ultimately modulation of gene expression. We provide a focused review of control mechanisms that help modulate the activation and deactivation of gene transcription specifically through histone acetylation writers and readers in cancer. The chemistry of these modifications is subject to clinically actionable targeting, including state-of-the-art strategies to inhibit basic oncogenic mechanisms related to histone acetylation. Although discussed in the context of acute leukemia, the concepts of acetylation writers and readers are not cell-type-specific and are generalizable to other cancers. We review the challenges and resistance mechanisms encountered to date in the development of such therapeutics and postulate how such challenges may be overcome. Because these fundamental cellular mechanisms are dysregulated in cancer biology, continued research and in-depth understanding of histone acetylation reading and writing are desired to further define optimal therapeutic strategies to affect gene activity to target cancer effectively.

30 citations


Cites methods from "Induced protein degradation: an eme..."

  • ...To date, PROTACs have been used experimentally, however, because of the selectivity and effectiveness of such an induced protein degradation strategy, their use has gained momentum for further development.(69) Preclinical in vitro studies have shown that PROTACs may have utility in leukemia....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Experimental and computational approaches to estimate solubility and permeability in discovery and development settings are described in this article, where the rule of 5 is used to predict poor absorption or permeability when there are more than 5 H-bond donors, 10 Hbond acceptors, and the calculated Log P (CLogP) is greater than 5 (or MlogP > 415).

14,026 citations

Journal ArticleDOI
17 Aug 2012-Science
TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Abstract: Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.

12,865 citations

Journal ArticleDOI
15 Feb 2013-Science
TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.
Abstract: Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

12,265 citations

01 Feb 2013
TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Abstract: Genome Editing Clustered regularly interspaced short palindromic repeats (CRISPR) function as part of an adaptive immune system in a range of prokaryotes: Invading phage and plasmid DNA is targeted for cleavage by complementary CRISPR RNAs (crRNAs) bound to a CRISPR-associated endonuclease (see the Perspective by van der Oost). Cong et al. (p. 819, published online 3 January) and Mali et al. (p. 823, published online 3 January) adapted this defense system to function as a genome editing tool in eukaryotic cells. A bacterial genome defense system is adapted to function as a genome-editing tool in mammalian cells. [Also see Perspective by van der Oost] Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

10,746 citations

Journal ArticleDOI
29 Mar 2012-Nature
TL;DR: The results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents and the generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of ‘personalized’ therapeutic regimens.
Abstract: The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.

6,417 citations

Related Papers (5)