scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Induced protein degradation: an emerging drug discovery paradigm

01 Feb 2017-Nature Reviews Drug Discovery (Nature Research)-Vol. 16, Iss: 2, pp 101-114
TL;DR: Induced protein degradation has the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Abstract: Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , pose occupancy time and fraction were measured to identify the native and non-native ternary complex poses in E3 ubiquitin ligase and a target protein.
Abstract: Proteolysis targeting chimeras (PROTACs) are molecules that induce protein degradation via formation of ternary complexes between an E3 ubiquitin ligase and a target protein. The rational design of PROTACs requires accurate knowledge of the native configuration of the PROTAC-induced ternary complex. This study demonstrates that native and non-native ternary complex poses can be distinguished based on the pose occupancy time in MD, where native poses exhibit longer occupancy times at both room and higher temperatures. Candidate poses are generated by MD sampling and pre-ranked by classic MM/GBSA. A specific heating scheme is then applied to accelerate ternary pose departure, with the pose occupancy time and fraction being measured. This scoring identifies the native pose in all systems tested. Its success is partially attributed to the dynamic nature of pose departure analyses, which accounts for entropic effects typically neglected in the faster static scoring methods, while entropy plays a greater role in protein-protein than in protein-ligand systems.

20 citations

Journal ArticleDOI
Abstract: Classic small molecule inhibitors that directly target pathogenic proteins typically rely on the accessible binding sites to achieve prolonged occupancy and influence protein functions. The emerging targeted protein degradation (TPD) strategies exemplified by PROteolysis TArgeting Chimeras (PROTACs) are revolutionizing conventional drug discovery modality to target proteins of interest (POIs) that were categorized as "undruggable" before, however, these strategies are limited within intracellular POIs. The novel new degrader technologies such as LYsosome-TArgeting Chimaeras (LYTACs) and Antibody-based PROTACs (AbTACs) have been successfully developed to expand the scope of TPD to extracellular and membrane proteins, fulfilling huge unmet medical needs. Here, we systematically review the currently viable protein degradation strategies, emphasize that LYTACs and AbTACs turn a new avenue for the development of TPD, and highlight the potential challenges and directions in this vibrant field.

20 citations

Journal ArticleDOI
TL;DR: A new photocaged cell-permeable ubiquitin probe that undergoes photoactivation upon 365 nm UV treatment and enables intracellular deubiquitinating enzyme profiling and represents a valuable new tool for achieving a better understanding of the cellular functions of DUBs is reported.
Abstract: Photocaged cell-permeable ubiquitin probe holds promise in profiling the activity of cellular deubiquitinating enzymes (DUBs) with the much needed temporal control. Here we report a new photocaged cell-permeable ubiquitin probe that undergoes photoactivation upon 365 nm UV treatment and enables intracellular deubiquitinating enzyme profiling. We used a semisynthetic approach to generate modular ubiquitin-based probe containing a tetrazole-derived warhead at the C-terminus of ubiquitin and employed a cyclic polyarginine cell-penetrating peptide (cR10) conjugated to the N-terminus of ubiquitin via a disulfide linkage to deliver the probe into live cells. Upon 365 nm UV irradiation, the tetrazole group is converted to a nitrilimine intermediate in situ, which reacts with nearby nucleophilic cysteine residue from the DUB active site. The new photocaged cell-permeable probe showed good reactivity toward purified DUBs, including USP2, UCHL1, and UCHL3, upon photoirradiation. The Ub-tetrazole probe was also assessed in HeLa cell lysate and showed robust labeling only upon photoactivation. We further carried out protein profiling in intact HeLa cells using the new photocaged cell-permeable ubiquitin probe and identified DUBs captured by the probe using label-free quantitative (LFQ) mass spectrometry. Importantly, the photocaged cell-permeable ubiquitin probe captured DUBs specifically in respective G1/S and G2/M phases in synchronized HeLa cells. Moreover, using this probe DUBs were profiled at different time points following the release of HeLa cells from G1/S phase. Our results showed that photocaged cell-permeable probe represents a valuable new tool for achieving a better understanding of the cellular functions of DUBs.

20 citations

Journal ArticleDOI
TL;DR: An overview of approaches to identify senolytics and an update of the classes of identified to date can be found in this article, where the authors also provide an overview of the types of drugs that can selectively kill senescent cells.

20 citations

Journal ArticleDOI
TL;DR: In this paper, a NSD3-targeting proteolysis targeting chimera (PROTAC) was proposed, which achieves effective and specific targeting of NSD and associated cMyc node in tumor cells.

20 citations

References
More filters
Journal ArticleDOI
TL;DR: Experimental and computational approaches to estimate solubility and permeability in discovery and development settings are described in this article, where the rule of 5 is used to predict poor absorption or permeability when there are more than 5 H-bond donors, 10 Hbond acceptors, and the calculated Log P (CLogP) is greater than 5 (or MlogP > 415).

14,026 citations

Journal ArticleDOI
17 Aug 2012-Science
TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Abstract: Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.

12,865 citations

Journal ArticleDOI
15 Feb 2013-Science
TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.
Abstract: Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

12,265 citations

01 Feb 2013
TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Abstract: Genome Editing Clustered regularly interspaced short palindromic repeats (CRISPR) function as part of an adaptive immune system in a range of prokaryotes: Invading phage and plasmid DNA is targeted for cleavage by complementary CRISPR RNAs (crRNAs) bound to a CRISPR-associated endonuclease (see the Perspective by van der Oost). Cong et al. (p. 819, published online 3 January) and Mali et al. (p. 823, published online 3 January) adapted this defense system to function as a genome editing tool in eukaryotic cells. A bacterial genome defense system is adapted to function as a genome-editing tool in mammalian cells. [Also see Perspective by van der Oost] Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

10,746 citations

Journal ArticleDOI
29 Mar 2012-Nature
TL;DR: The results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents and the generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of ‘personalized’ therapeutic regimens.
Abstract: The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.

6,417 citations

Related Papers (5)