scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Induced protein degradation: an emerging drug discovery paradigm

01 Feb 2017-Nature Reviews Drug Discovery (Nature Research)-Vol. 16, Iss: 2, pp 101-114
TL;DR: Induced protein degradation has the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Abstract: Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Novel screening methods and chemical biology tools for targeting E1-activating, E2-conjugating and deubiquitinating enzymes as well as the proteasome will be discussed in this review.

12 citations

Journal ArticleDOI
Jianhong Yang1, Wei Yan1, Yong Li1, Lu Niu1, Haoyu Ye1, Lijuan Chen1 
TL;DR: It is shown that WIT induces down-regulation of tubulin in a post-transcriptional manner, suggestive of direct and potent activity in tubulin degradation and covalent interactions between WIT and Cys239 of β-tubulin promote Tubulin degradation, supporting its potential utility as a therapeutic compound.
Abstract: Withaferin A (WIT) is a natural product possessing a wide range of pharmacologic activities. Previous studies have reported covalent binding of WIT to tubulin and down-of tubulin protein levels although the underlying mechanisms remain to be established. In the current investigation, we showed that WIT induces down-regulation of tubulin in a post-transcriptional manner, suggestive of direct and potent activity in tubulin degradation. The N,N'-ethylene bis(iodoacetamide) assay and competitive binding experiments with four colchicine site-targeted tubulin inhibitors further revealed that WIT interacts with the colchicine site of tubulin to promote degradation. WIT irreversibly inhibited tubulin polymerization, and mass spectrometry results disclosed binding to cysteine at position 239 (Cys239) and Cys303 sites of β-tubulin. Interestingly, WIT promoted degradation of the β-tubulin isoforms containing Cys239 [β2, β4, and β5(β)] but had no effect on those containing Ser239 (β3 and β6). Moreover, a C239S but not C303S mutation in β-tubulin completely abolished the degradation effect of WIT, suggesting that the Cys239-WIT covalent bond accounts for this activity. Our collective results clearly demonstrate that covalent interactions between WIT and Cys239 of β-tubulin promote tubulin degradation, supporting its potential utility as a therapeutic compound. SIGNIFICANCE STATEMENT: Withaferin A, a natural product possessing a wide range of pharmacologic activities, covalently binds to Cys239 of β-tubulin near the colchicine site, and the WIT-Cys239 covalent bond accounts for WIT-induced tubulin degradation, fully clarifying the underlying mechanisms and supporting its potential utility a therapeutic compound.

12 citations


Cites background from "Induced protein degradation: an eme..."

  • ...The newly developed proteolysis targeting chimera (PROTAC) protein degradation technology plays a significant part in modern anticancer drug design (Lai and Crews, 2017)....

    [...]

  • ...However, PROTACs are made up of two small molecules, which is an inherent disadvantage because the molecular weight is usually large and pharmacokinetic data as well as drug-forming properties are poor (Lai and Crews, 2017)....

    [...]

Journal ArticleDOI
01 Jul 2018-Bone
TL;DR: Because HO is triggered by soft-tissue trauma and ensuing hypoxia, dependency of ALK destabilization on hypoxic pH imparts selective efficacy on the allosteric inhibitors, providing potential for safe prophylactic use.

12 citations

Posted ContentDOI
10 Dec 2020-bioRxiv
TL;DR: A new methodology named ABPP-HT (high-throughput-compatible activity-based protein profiling), implementing a semi-automated proteomic sample preparation workflow that increases the throughput capabilities of the classical ABPP workflow approximately ten times while preserving its enzyme profiling characteristics.
Abstract: The potency and selectivity of a small molecule inhibitor are key parameters to assess during the early stages of drug discovery. In particular, it is very informative for characterizing compounds in a relevant cellular context in order to reveal potential off-target effects and drug efficacy. Activity-based probes (ABPs) are valuable tools for that purpose, however, obtaining cellular target engagement data in a high-throughput format has been particularly challenging. Here, we describe a new methodology named ABPP-HT (high-throughput-compatible activity-based protein profiling), implementing a semi-automated proteomic sample preparation workflow that increases the throughput capabilities of the classical ABPP workflow approximately ten times while preserving its enzyme profiling characteristics. Using a panel of deubiquitylating enzyme (DUB) inhibitors, we demonstrate the feasibility of ABPP-HT to provide compound selectivity profiles of endogenous DUBs in a cellular context at a fraction of time as compared to previous methodologies.

12 citations


Cites background from "Induced protein degradation: an eme..."

  • ...…various E3 ligases and DUBs are being evaluated as potential drug targets for either protein targeting chimeras (PROTACs) or inhibitors, respectively, due to their proven ability to specifically target cellular protein homeostasis (Huang and Dixit, 2016; Lai and Crews, 2017; Harrigan et al., 2018)....

    [...]

  • ...Consequently, various E3 ligases and 40 DUBs are being evaluated as potential drug targets for either protein targeting chimeras (PROTACs) or 41 inhibitors, respectively, due to their proven ability to specifically target cellular protein homeostasis (Huang 42 and Dixit, 2016; Lai and Crews, 2017; Harrigan et al., 2018)....

    [...]

Journal ArticleDOI
TL;DR: In this article , a checkpoint nano-proteolysis targeting chimeras (nano-PROTACs) in combination with photodynamic tumor regression and immunosuppressive protein degradation to block checkpoint signaling pathways for activatable cancer photo-immunotherapy are reported.
Abstract: Checkpoint immunotherapy holds great potential to treat malignancies via blocking the immunosuppressive signaling pathways, which however suffers from inefficiency and off‐target adverse effects. Herein, checkpoint nano‐proteolysis targeting chimeras (nano‐PROTACs) in combination with photodynamic tumor regression and immunosuppressive protein degradation to block checkpoint signaling pathways for activatable cancer photo‐immunotherapy are reported. These nano‐PROTACs are composed of a photosensitizer (protoporphyrin IX, PpIX) and an Src homology 2 domain‐containing phosphatase 2 (SHP2)‐targeting PROTAC peptide (aPRO) via a caspase 3‐cleavable segment. aPRO is activated by the increased expression of caspase 3 in tumor cells after phototherapeutic treatment and induces targeted degradation of SHP2 via the ubiquitin‐proteasome system. The persistent depletion of SHP2 blocks the immunosuppressive checkpoint signaling pathways (CD47/SIRPα and PD‐1/PD‐L1), thus reinvigorating antitumor macrophages and T cells. Such a checkpoint PROTAC strategy synergizes immunogenic phototherapy to boost antitumor immune response. Thus, this study represents a generalized PROTAC platform to modulate immune‐related signaling pathways for improved anticancer therapy.

11 citations

References
More filters
Journal ArticleDOI
TL;DR: Experimental and computational approaches to estimate solubility and permeability in discovery and development settings are described in this article, where the rule of 5 is used to predict poor absorption or permeability when there are more than 5 H-bond donors, 10 Hbond acceptors, and the calculated Log P (CLogP) is greater than 5 (or MlogP > 415).

14,026 citations

Journal ArticleDOI
17 Aug 2012-Science
TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Abstract: Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.

12,865 citations

Journal ArticleDOI
15 Feb 2013-Science
TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.
Abstract: Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

12,265 citations

01 Feb 2013
TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Abstract: Genome Editing Clustered regularly interspaced short palindromic repeats (CRISPR) function as part of an adaptive immune system in a range of prokaryotes: Invading phage and plasmid DNA is targeted for cleavage by complementary CRISPR RNAs (crRNAs) bound to a CRISPR-associated endonuclease (see the Perspective by van der Oost). Cong et al. (p. 819, published online 3 January) and Mali et al. (p. 823, published online 3 January) adapted this defense system to function as a genome editing tool in eukaryotic cells. A bacterial genome defense system is adapted to function as a genome-editing tool in mammalian cells. [Also see Perspective by van der Oost] Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

10,746 citations

Journal ArticleDOI
29 Mar 2012-Nature
TL;DR: The results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents and the generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of ‘personalized’ therapeutic regimens.
Abstract: The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.

6,417 citations

Related Papers (5)