scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Induced protein degradation: an emerging drug discovery paradigm

01 Feb 2017-Nature Reviews Drug Discovery (Nature Research)-Vol. 16, Iss: 2, pp 101-114
TL;DR: Induced protein degradation has the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Abstract: Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The results elucidate how PROTAC-induced de novo contacts dictate preferential recruitment of a target protein into a stable and cooperative complex with an E3 ligase for selective degradation.
Abstract: Inducing macromolecular interactions with small molecules to activate cellular signaling is a challenging goal. PROTACs (proteolysis-targeting chimeras) are bifunctional molecules that recruit a target protein in proximity to an E3 ubiquitin ligase to trigger protein degradation. Structural elucidation of the key ternary ligase-PROTAC-target species and its impact on target degradation selectivity remain elusive. We solved the crystal structure of Brd4 degrader MZ1 in complex with human VHL and the Brd4 bromodomain (Brd4BD2). The ligand folds into itself to allow formation of specific intermolecular interactions in the ternary complex. Isothermal titration calorimetry studies, supported by surface mutagenesis and proximity assays, are consistent with pronounced cooperative formation of ternary complexes with Brd4BD2. Structure-based-designed compound AT1 exhibits highly selective depletion of Brd4 in cells. Our results elucidate how PROTAC-induced de novo contacts dictate preferential recruitment of a target protein into a stable and cooperative complex with an E3 ligase for selective degradation.

646 citations

Journal ArticleDOI
TL;DR: An overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors are provided.
Abstract: Receptor tyrosine kinase signalling pathways have been successfully targeted to inhibit proliferation and angiogenesis for cancer therapy. However, kinase deregulation has been firmly demonstrated to play an essential role in virtually all major disease areas. Kinase inhibitor drug discovery programmes have recently broadened their focus to include an expanded range of kinase targets and therapeutic areas. In this Review, we provide an overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors.

620 citations

Journal ArticleDOI
TL;DR: Four scientists working in the 'undruggable' cancer research field are asked for their opinions on the most crucial advances, as well as the challenges and what the future holds for this important area of research.
Abstract: The term 'undruggable' was coined to describe proteins that could not be targeted pharmacologically. However, progress is being made to 'drug' many of these targets, and therefore more appropriate terms might be 'difficult to drug' or 'yet to be drugged'. Many desirable targets in cancer fall into this category, including the RAS and MYC oncogenes, and pharmacologically targeting these intractable proteins is now a key challenge in cancer research that requires innovation and the development of new technologies. In this Viewpoint article, we asked four scientists working in this field for their opinions on the most crucial advances, as well as the challenges and what the future holds for this important area of research.

529 citations

Journal ArticleDOI
TL;DR: This Review discusses the various approaches that are being explored to target transcription factors in cancer, with many of the inhibitors developed from such approaches now advancing to early clinical trials.
Abstract: Mutated or dysregulated transcription factors represent a unique class of drug targets that mediate aberrant gene expression, including blockade of differentiation and cell death gene expression programmes, hallmark properties of cancers. Transcription factor activity is altered in numerous cancer types via various direct mechanisms including chromosomal translocations, gene amplification or deletion, point mutations and alteration of expression, as well as indirectly through non-coding DNA mutations that affect transcription factor binding. Multiple approaches to target transcription factor activity have been demonstrated, preclinically and, in some cases, clinically, including inhibition of transcription factor-cofactor protein-protein interactions, inhibition of transcription factor-DNA binding and modulation of levels of transcription factor activity by altering levels of ubiquitylation and subsequent proteasome degradation or by inhibition of regulators of transcription factor expression. In addition, several new approaches to targeting transcription factors have recently emerged including modulation of auto-inhibition, proteolysis targeting chimaeras (PROTACs), use of cysteine reactive inhibitors, targeting intrinsically disordered regions of transcription factors and combinations of transcription factor inhibitors with kinase inhibitors to block the development of resistance. These innovations in drug development hold great promise to yield agents with unique properties that are likely to impact future cancer treatment.

409 citations

Journal ArticleDOI
TL;DR: Opportunities for the expansion of the medicinal chemists' synthetic toolbox are highlighted to enable enhanced impact of new methodologies in future drug discovery.
Abstract: The key objectives of medicinal chemistry are to efficiently design and synthesize bioactive compounds that have the potential to become safe and efficacious drugs. Most medicinal chemistry programmes rely on screening compound collections populated by a range of molecules derived from a set of known and robust chemistry reactions. Analysis of the role of synthetic organic chemistry in subsequent hit and lead optimization efforts suggests that only a few reactions dominate. Thus, the uptake of new synthetic methodologies in drug discovery is limited. Starting from the known limitations of reaction parameters, synthesis design tools, synthetic strategies and innovative chemistries, here we highlight opportunities for the expansion of the medicinal chemists' synthetic toolbox. More intense crosstalk between synthetic and medicinal chemists in industry and academia should enable enhanced impact of new methodologies in future drug discovery.

348 citations

References
More filters
Journal Article
TL;DR: 4-anilino-3-quinolinecarbonitrile (SKI-606) ablates tyrosine phosphorylation of Bcr-Abl in CML cells and of v-A Bl expressed in fibroblasts, which causes complete regression of large K562 xenografts in nude mice.
Abstract: Constitutive tyrosine kinase activity of Bcr-Abl promotes proliferation and survival of chronic myelogenous leukemia (CML) cells. Inhibition of Bcr-Abl tyrosine kinase activity or signaling proteins activated by Bcr-Abl in CML cells blocks proliferation and causes apoptotic cell death. The selective Abl kinase inhibitor, STI-571 (marketed as Gleevec), is toxic to CML cells in culture, causes regression of CML tumors in nude mice, and is currently used to treat CML patients. Here we describe a p.o. active, dual Src/Abl kinase inhibitor with potent antiproliferative activity against CML cells in culture. This 4-anilino-3-quinolinecarbonitrile (SKI-606) ablates tyrosine phosphorylation of Bcr-Abl in CML cells and of v-Abl expressed in fibroblasts. SKI-606 inhibits phosphorylation of cellular proteins, including STAT5, at concentrations that inhibit proliferation in CML cells. Phosphorylation of the autoactivation site of the Src family kinases Lyn and/or Hck is also reduced by treatment with SKI-606. Once daily oral administration of this compound at 100 mg/kg for 5 days causes complete regression of large K562 xenografts in nude mice.

424 citations

Journal ArticleDOI
TL;DR: It is found that mammalian Hsp90, in cooperation with Hsp70, p60, and other factors, mediates the ATP-dependent refolding of heat-denatured proteins, such as firefly luciferase.
Abstract: The role of the abundant stress protein Hsp90 in protecting cells against stress-induced damage is not well understood. The recent discovery that a class of ansamycin antibiotics bind specifically to Hsp90 allowed us to address this problem from a new angle. We find that mammalian Hsp90, in cooperation with Hsp70, p60, and other factors, mediates the ATP-dependent refolding of heat-denatured proteins, such as firefly luciferase. Failure to refold results in proteolysis. The ansamycins inhibit refolding, both in vivo and in a cell extract, by preventing normal dissociation of Hsp90 from luciferase, causing its enhanced degradation. This mechanism also explains the ansamycin-induced proteolysis of several protooncogenic protein kinases, such as Raf-1, which interact with Hsp90. We propose that Hsp90 is part of a quality control system that facilitates protein refolding or degradation during recovery from stress. This function is used by a limited set of signal transduction molecules for their folding and regulation under nonstress conditions. The ansamycins shift the mode of Hsp90 from refolding to degradation, and this effect is probably amplified for specific Hsp90 substrates.

411 citations

Journal ArticleDOI
TL;DR: A heterobifunctional all-small molecule PROTAC (PROteolysis TArgeting Chimera) capable of inducing proteasomal degradation of the androgen receptor is developed, which is proteasome dependent and mitigated in cells pre-treated with 10microM epoxomicin, a specific prote asome inhibitor.

410 citations

Journal ArticleDOI
TL;DR: This review describes the different molecules and approaches being used or proposed in cancer therapy based on the in inhibition of HSP90, HSP70 and HSP27.

407 citations

Journal ArticleDOI
TL;DR: This finding suggests that MetAP2 may play a critical role in the proliferation of endothelial cells and may serve as a promising target for the development of new anti-angiogenic drugs.

406 citations

Related Papers (5)