scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Induced protein degradation: an emerging drug discovery paradigm

01 Feb 2017-Nature Reviews Drug Discovery (Nature Research)-Vol. 16, Iss: 2, pp 101-114
TL;DR: Induced protein degradation has the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Abstract: Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The results elucidate how PROTAC-induced de novo contacts dictate preferential recruitment of a target protein into a stable and cooperative complex with an E3 ligase for selective degradation.
Abstract: Inducing macromolecular interactions with small molecules to activate cellular signaling is a challenging goal. PROTACs (proteolysis-targeting chimeras) are bifunctional molecules that recruit a target protein in proximity to an E3 ubiquitin ligase to trigger protein degradation. Structural elucidation of the key ternary ligase-PROTAC-target species and its impact on target degradation selectivity remain elusive. We solved the crystal structure of Brd4 degrader MZ1 in complex with human VHL and the Brd4 bromodomain (Brd4BD2). The ligand folds into itself to allow formation of specific intermolecular interactions in the ternary complex. Isothermal titration calorimetry studies, supported by surface mutagenesis and proximity assays, are consistent with pronounced cooperative formation of ternary complexes with Brd4BD2. Structure-based-designed compound AT1 exhibits highly selective depletion of Brd4 in cells. Our results elucidate how PROTAC-induced de novo contacts dictate preferential recruitment of a target protein into a stable and cooperative complex with an E3 ligase for selective degradation.

646 citations

Journal ArticleDOI
TL;DR: An overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors are provided.
Abstract: Receptor tyrosine kinase signalling pathways have been successfully targeted to inhibit proliferation and angiogenesis for cancer therapy. However, kinase deregulation has been firmly demonstrated to play an essential role in virtually all major disease areas. Kinase inhibitor drug discovery programmes have recently broadened their focus to include an expanded range of kinase targets and therapeutic areas. In this Review, we provide an overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors.

620 citations

Journal ArticleDOI
TL;DR: Four scientists working in the 'undruggable' cancer research field are asked for their opinions on the most crucial advances, as well as the challenges and what the future holds for this important area of research.
Abstract: The term 'undruggable' was coined to describe proteins that could not be targeted pharmacologically. However, progress is being made to 'drug' many of these targets, and therefore more appropriate terms might be 'difficult to drug' or 'yet to be drugged'. Many desirable targets in cancer fall into this category, including the RAS and MYC oncogenes, and pharmacologically targeting these intractable proteins is now a key challenge in cancer research that requires innovation and the development of new technologies. In this Viewpoint article, we asked four scientists working in this field for their opinions on the most crucial advances, as well as the challenges and what the future holds for this important area of research.

529 citations

Journal ArticleDOI
TL;DR: This Review discusses the various approaches that are being explored to target transcription factors in cancer, with many of the inhibitors developed from such approaches now advancing to early clinical trials.
Abstract: Mutated or dysregulated transcription factors represent a unique class of drug targets that mediate aberrant gene expression, including blockade of differentiation and cell death gene expression programmes, hallmark properties of cancers. Transcription factor activity is altered in numerous cancer types via various direct mechanisms including chromosomal translocations, gene amplification or deletion, point mutations and alteration of expression, as well as indirectly through non-coding DNA mutations that affect transcription factor binding. Multiple approaches to target transcription factor activity have been demonstrated, preclinically and, in some cases, clinically, including inhibition of transcription factor-cofactor protein-protein interactions, inhibition of transcription factor-DNA binding and modulation of levels of transcription factor activity by altering levels of ubiquitylation and subsequent proteasome degradation or by inhibition of regulators of transcription factor expression. In addition, several new approaches to targeting transcription factors have recently emerged including modulation of auto-inhibition, proteolysis targeting chimaeras (PROTACs), use of cysteine reactive inhibitors, targeting intrinsically disordered regions of transcription factors and combinations of transcription factor inhibitors with kinase inhibitors to block the development of resistance. These innovations in drug development hold great promise to yield agents with unique properties that are likely to impact future cancer treatment.

409 citations

Journal ArticleDOI
TL;DR: Opportunities for the expansion of the medicinal chemists' synthetic toolbox are highlighted to enable enhanced impact of new methodologies in future drug discovery.
Abstract: The key objectives of medicinal chemistry are to efficiently design and synthesize bioactive compounds that have the potential to become safe and efficacious drugs. Most medicinal chemistry programmes rely on screening compound collections populated by a range of molecules derived from a set of known and robust chemistry reactions. Analysis of the role of synthetic organic chemistry in subsequent hit and lead optimization efforts suggests that only a few reactions dominate. Thus, the uptake of new synthetic methodologies in drug discovery is limited. Starting from the known limitations of reaction parameters, synthesis design tools, synthetic strategies and innovative chemistries, here we highlight opportunities for the expansion of the medicinal chemists' synthetic toolbox. More intense crosstalk between synthetic and medicinal chemists in industry and academia should enable enhanced impact of new methodologies in future drug discovery.

348 citations

References
More filters
Journal ArticleDOI
TL;DR: This Review provides a framework to understand this evolution of biophysical technologies by describing the key biophysical methods, the information they can provide and the ways in which they can be applied at different stages of the drug discovery process.
Abstract: Over the past 25 years, biophysical technologies such as X-ray crystallography, nuclear magnetic resonance spectroscopy, surface plasmon resonance spectroscopy and isothermal titration calorimetry have become key components of drug discovery platforms in many pharmaceutical companies and academic laboratories. There have been great improvements in the speed, sensitivity and range of possible measurements, providing high-resolution mechanistic, kinetic, thermodynamic and structural information on compound-target interactions. This Review provides a framework to understand this evolution by describing the key biophysical methods, the information they can provide and the ways in which they can be applied at different stages of the drug discovery process. We also discuss the challenges for current technologies and future opportunities to use biophysical methods to solve drug discovery problems.

265 citations

Journal ArticleDOI
TL;DR: In this article, the authors showed that although elevated levels of MAPK occur during LTED and influence the phenotype, this is unlikely to be the sole pathway operating to achieve adaptation.

265 citations

Journal ArticleDOI
TL;DR: This phase I study of RG7112 provides proof-of-concept that MDM2 inhibition restores p53 function and generates clinical responses in hematologic malignancies and demonstrates clinical activity against relapsed/refractory AML and CLL/sCLL.
Abstract: Purpose: RG7112 is a small-molecule MDM2 antagonist. MDM2 is a negative regulator of the tumor suppressor p53 and frequently overexpressed in leukemias. Thus, a phase I study of RG7112 in patients with hematologic malignancies was conducted. Experimental Design: Primary study objectives included determination of the dose and safety profile of RG7112. Secondary objectives included evaluation of pharmacokinetics; pharmacodynamics, such as TP53 -mutation status and MDM2 expression; and preliminary clinical activity. Patients were divided into two cohorts: Stratum A [relapsed/refractory acute myeloid leukemia (AML; except acute promyelocytic leukemia), acute lymphoblastic leukemia, and chronic myelogenous leukemia] and Stratum B (relapsed/refractory chronic lymphocytic leukemia/small cell lymphocytic leukemia; CLL/sCLL). Some Stratum A patients were treated at the MTD to assess clinical activity. Results: RG7112 was administered to 116 patients (96 patients in Stratum A and 20 patients in Stratum B). All patients experienced at least 1 adverse event, and 3 dose-limiting toxicities were reported. Pharmacokinetic analysis indicated that twice-daily dosing enhanced daily exposure. Antileukemia activity was observed in the 30 patients with AML assessed at the MTD, including 5 patients who met International Working Group (IWG) criteria for response. Exploratory analysis revealed TP53 mutations in 14% of Stratum A patients and in 40% of Stratum B patients. Two patients with TP53 mutations exhibited clinical activity. p53 target genes were induced only in TP53 wild-type leukemic cells. Baseline expression levels of MDM2 correlated positively with clinical response. Conclusions: RG7112 demonstrated clinical activity against relapsed/refractory AML and CLL/sCLL. MDM2 inhibition resulted in p53 stabilization and transcriptional activation of p53-target genes. We provide proof-of-concept that MDM2 inhibition restores p53 function and generates clinical responses in hematologic malignancies. Clin Cancer Res; 22(4); 868–76. ©2015 AACR .

255 citations

Journal ArticleDOI
TL;DR: The original version of this Data Descriptor contained a typographical error in the spelling of the author Terence C. Wong, which was incorrectly given as Terrence C Wong as discussed by the authors.
Abstract: Scientific Data 1:140035 doi: 10.1038/sdata.2014.35 (2014); Published 30 September 2014; Updated 11 November 2014 The original version of this Data Descriptor contained a typographical error in the spelling of the author Terence C. Wong, which was incorrectly given as Terrence C. Wong. This has now been corrected in the PDF and HTML versions of the Data Descriptor.

244 citations

Journal ArticleDOI
TL;DR: This work uses PU-H71 affinity capture to design a proteomic approach that, when combined with bioinformatic pathway analysis, identifies dysregulated signaling networks and key oncoproteins in chronic myeloid leukemia and shows that this method can provide global insights into the biology of individual tumors, including primary patient specimens.
Abstract: Most cancers are characterized by multiple molecular alterations, but identification of the key proteins involved in these signaling pathways is currently beyond reach. We show that the inhibitor PU-H71 preferentially targets tumor-enriched Hsp90 complexes and affinity captures Hsp90-dependent oncogenic client proteins. We have used PU-H71 affinity capture to design a proteomic approach that, when combined with bioinformatic pathway analysis, identifies dysregulated signaling networks and key oncoproteins in chronic myeloid leukemia. The identified interactome overlaps with the well-characterized altered proteome in this cancer, indicating that this method can provide global insights into the biology of individual tumors, including primary patient specimens. In addition, we show that this approach can be used to identify previously uncharacterized oncoproteins and mechanisms, potentially leading to new targeted therapies. We further show that the abundance of the PU-H71-enriched Hsp90 species, which is not dictated by Hsp90 expression alone, is predictive of the cell's sensitivity to Hsp90 inhibition.

242 citations

Related Papers (5)