scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Inducible interleukin-1 gene expression in human vascular smooth muscle cells.

01 Dec 1986-Journal of Clinical Investigation (American Society for Clinical Investigation)-Vol. 78, Iss: 6, pp 1432-1438
TL;DR: Human SMC can express IL-1 beta andIL-1 alpha genes, or very similar ones, and secrete biologically active product in response to a pathological stimulus, and endogenous local production of this inflammatory mediator by the blood vessel wall's major cell type could play an important early role in the pathogenesis of vasculitis and arteriosclerosis.
Abstract: Interleukin-1 (IL-1) mediates many components of generalized host response to injury and may also contribute to local vascular pathology during immune or inflammatory responses. Because altered function of smooth muscle cells (SMC) accompanies certain vascular diseases, we tested whether SMC themselves might produce this hormone. Unstimulated SMC contain little or no IL-1 mRNA. However, exposure to bacterial endotoxin caused accumulation of IL-1 mRNA in SMC cultured from human vessels. Endotoxin maximally increased IL-1 beta mRNA in SMC after 4-6 h. The lowest effective concentration of endotoxin was 10 pg/ml. 10 ng/ml produced maximal increases in IL-1 beta mRNA. Interleukin-1 alpha mRNA was detected when SMC were incubated with endotoxin under "superinduction" conditions with cycloheximide. Endotoxin-stimulated SMC also released biologically functional IL-1, measured as thymocyte costimulation activity inhibitable by anti-IL-1 antibody. Thus, human SMC can express IL-1 beta and IL-1 alpha genes, or very similar ones, and secrete biologically active product in response to a pathological stimulus. Endogenous local production of this inflammatory mediator by the blood vessel wall's major cell type could play an important early role in the pathogenesis of vasculitis and arteriosclerosis.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.
Abstract: Abundant data link hypercholesterolaemia to atherogenesis. However, only recently have we appreciated that inflammatory mechanisms couple dyslipidaemia to atheroma formation. Leukocyte recruitment and expression of pro-inflammatory cytokines characterize early atherogenesis, and malfunction of inflammatory mediators mutes atheroma formation in mice. Moreover, inflammatory pathways promote thrombosis, a late and dreaded complication of atherosclerosis responsible for myocardial infarctions and most strokes. The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies. Identifying the triggers for inflammation and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.

7,858 citations

Journal ArticleDOI
TL;DR: The discovery of the immune basis of allograft arteriosclerosis demonstrated that inflammation per se can drive arterial hyperplasia, even in the absence of traditional risk factors.
Abstract: Experimental work has elucidated molecular and cellular pathways of inflammation that promote atherosclerosis. Unraveling the roles of cytokines as inflammatory messengers provided a mechanism whereby risk factors for atherosclerosis can alter arterial biology, and produce a systemic milieu that favors atherothrombotic events. The discovery of the immune basis of allograft arteriosclerosis demonstrated that inflammation per se can drive arterial hyperplasia, even in the absence of traditional risk factors. Inflammation regulates aspects of plaque biology that trigger the thrombotic complications of atherosclerosis. Translation of these discoveries to humans has enabled both novel mechanistic insights and practical clinical advances.

4,307 citations

Journal ArticleDOI
15 Apr 1991-Blood
TL;DR: The recent cloning of a naturally occurring IL-1 receptor antagonist (IL-1ra) has opened new experimental and clinical approaches and reduced the severity of diseases such as hemodynamic shock, lethal sepsis, inflammatory bowel disease, experimental arthritis, and the spontaneous proliferation of human leukemic cells.

2,307 citations

Book ChapterDOI
TL;DR: Interleukin-1 (IL-1) and tumor necrosis factor (TNF) participate in self-augmentation induction mechanisms in cultured cells stimulated with viruses, bacterial toxins, and active complement components, and of immune complex.
Abstract: Publisher Summary Interleukin-1 (IL-1) and tumor necrosis factor (TNF) participate in self-augmentation induction mechanisms. Recombinant human IL-1 and TNF are each capable of inducing the production of their respective molecules as well as each other. IL-1 and TNF both induce IL-6. The target cells include: monocytes, endothelial cells, smooth muscle cells, and B cells. The concentrations of IL-1 and TNF that stimulate their own production in this self amplification cycle are within the range (1-10 ng/ml) of what has been measured in the supernatant media of cultured cells stimulated with viruses, bacterial toxins, and active complement components, and of immune complex. The ability of interferon-y to suppress IL-l-induced IL-1 production takes place in the presence of cyclo-oxygenase inhibition. Similarly, the ability of corticosteroids to reduce the transcription of IL-1 messenger RNA (mRNA) also takes place in the presence of cyclooxygenase inhibition. IL-1 is the prototype of a group of biologically potent polypeptides with molecular weights between 10,000 and 30,000. Because these substances are produced by a variety of cells and act on many different cell types, there is a growing acceptance of the terminology “cytokines,” rather than “lymphokines” or “monokines.” Of the various “cytokines,” several share the ability to stimulate or augment cell proliferation, initiate the synthesis of new proteins in a variety of cells, and induce the production of inflammatory metabolites. IL-1 is biologically similar to tumor necrosis factor (TNF), lymphotoxin, IL-6, fibroblast growth factor (FGF), platelet derived growth factor (PDGF), and transforming growth factor- β (TGF-β)

1,163 citations

Journal ArticleDOI
TL;DR: This review provides an overview of the current understanding of the role of immune mechanisms in atherosclerosis and suggests that immune modulation as well as immunization can reduce the progression of the disease.
Abstract: Atherosclerosis is an inflammatory disease. Its lesions are filled with immune cells that can orchestrate and effect inflammatory responses. In fact, the first lesions of atherosclerosis consist of macrophages and T cells. Unstable plaques are particularly rich in activated immune cells, suggesting that they may initiate plaque activation. We have seen a rapid increase in the understanding of the mechanisms that govern the recruitment, differentiation, and activation of immune cells in atherosclerosis. Experimental research has identified several candidate antigens, and there are encouraging data suggesting that immune modulation as well as immunization can reduce the progression of the disease. This review provides an overview of our current understanding of the role of immune mechanisms in atherosclerosis.

940 citations

References
More filters
Book
15 Jan 2001
TL;DR: Molecular Cloning has served as the foundation of technical expertise in labs worldwide for 30 years as mentioned in this paper and has been so popular, or so influential, that no other manual has been more widely used and influential.
Abstract: Molecular Cloning has served as the foundation of technical expertise in labs worldwide for 30 years. No other manual has been so popular, or so influential. Molecular Cloning, Fourth Edition, by the celebrated founding author Joe Sambrook and new co-author, the distinguished HHMI investigator Michael Green, preserves the highly praised detail and clarity of previous editions and includes specific chapters and protocols commissioned for the book from expert practitioners at Yale, U Mass, Rockefeller University, Texas Tech, Cold Spring Harbor Laboratory, Washington University, and other leading institutions. The theoretical and historical underpinnings of techniques are prominent features of the presentation throughout, information that does much to help trouble-shoot experimental problems. For the fourth edition of this classic work, the content has been entirely recast to include nucleic-acid based methods selected as the most widely used and valuable in molecular and cellular biology laboratories. Core chapters from the third edition have been revised to feature current strategies and approaches to the preparation and cloning of nucleic acids, gene transfer, and expression analysis. They are augmented by 12 new chapters which show how DNA, RNA, and proteins should be prepared, evaluated, and manipulated, and how data generation and analysis can be handled. The new content includes methods for studying interactions between cellular components, such as microarrays, next-generation sequencing technologies, RNA interference, and epigenetic analysis using DNA methylation techniques and chromatin immunoprecipitation. To make sense of the wealth of data produced by these techniques, a bioinformatics chapter describes the use of analytical tools for comparing sequences of genes and proteins and identifying common expression patterns among sets of genes. Building on thirty years of trust, reliability, and authority, the fourth edition of Mol

215,169 citations

Journal ArticleDOI
27 Nov 1980-Nature
TL;DR: It is demonstrated that relaxation of isolated preparations of rabbit thoracic aorta and other blood vessels by ACh requires the presence of endothelial cells, and that ACh, acting on muscarinic receptors of these cells, stimulates release of a substance(s) that causes relaxation of the vascular smooth muscle.
Abstract: Despite its very potent vasodilating action in vivo, acetylcholine (ACh) does not always produce relaxation of isolated preparations of blood vessels in vitro. For example, in the helical strip of the rabbit descending thoracic aorta, the only reported response to ACh has been graded contractions, occurring at concentrations above 0.1 muM and mediated by muscarinic receptors. Recently, we observed that in a ring preparation from the rabbit thoracic aorta, ACh produced marked relaxation at concentrations lower than those required to produce contraction (confirming an earlier report by Jelliffe). In investigating this apparent discrepancy, we discovered that the loss of relaxation of ACh in the case of the strip was the result of unintentional rubbing of its intimal surface against foreign surfaces during its preparation. If care was taken to avoid rubbing of the intimal surface during preparation, the tissue, whether ring, transverse strip or helical strip, always exhibited relaxation to ACh, and the possibility was considered that rubbing of the intimal surface had removed endothelial cells. We demonstrate here that relaxation of isolated preparations of rabbit thoracic aorta and other blood vessels by ACh requires the presence of endothelial cells, and that ACh, acting on muscarinic receptors of these cells, stimulates release of a substance(s) that causes relaxation of the vascular smooth muscle. We propose that this may be one of the principal mechanisms for ACh-induced vasodilation in vivo. Preliminary reports on some aspects of the work have been reported elsewhere.

11,871 citations

Journal ArticleDOI
20 Jun 1985-Nature
TL;DR: Two distinct but distantly related complementary DNAs encoding proteins sharing human interleukin-1 (IL-1) activity (termed IL-lα and IL-1β), were isolated from a macrophage cDNA library.
Abstract: Two distinct but distantly related complementary DNAs encoding proteins sharing human interleukin-1 (IL-1) activity (termed IL-1 alpha and IL-1 beta), were isolated from a macrophage cDNA library. The primary translation products of the genes are 271 and 269 amino acids long, although expression in Escherichia coli of the carboxy-terminal 159 and 153 amino acids produces IL-1 biological activity.

1,630 citations

Journal ArticleDOI
TL;DR: The growth of normal cells is largely controlled by the interplay between several polypeptide hormones and hormone-like growth factors that are present in tissue fluids.
Abstract: The growth of normal cells is largely controlled by the interplay between several polypeptide hormones and hormone-like growth factors that are present in tissue fluids.1 Many new polypeptide growth factors have recently been identified in blood, serum, tissue fluids, and cellular extracts.2 ,23 Malignant cells, however, are not subject to all the same growth controls as are normal cells. In general, malignant cells require less of these exogenous growth factors than do their normal counterparts for optimal growth and multiplication, and it has been suggested that "transformed or malignant cells escape from normal growth controls by requiring less of [such] hormones . . .

1,370 citations


"Inducible interleukin-1 gene expres..." refers background in this paper

  • ...Information transfer between adjacent cells of different types has been termed "paracrine" control (40)....

    [...]

Journal ArticleDOI
TL;DR: It is suggested that IL-1 can act selectively on human vascular endothelium to increase its adhesivity for circulating blood leukocytes, and thus to localize leukocyte-vessel wall interactions at sites of inflammation in vivo.
Abstract: Increased leukocyte adhesion to the endothelial lining of blood vessels is an essential event in inflammation and the pathogenesis of certain vascular diseases. We have studied the effect of interleukin 1 (IL-1), an inflammatory/immune mediator, on endothelial-leukocyte adhesion using quantitative in vitro assays. Selective pretreatment of cultured human umbilical vein endothelial monolayers with IL-1 (5 U/ml, 4 h) resulted in an 18.3 +/- 2.6-fold increase in human peripheral blood polymorphonuclear leukocyte (PMN) adhesion (mean +/- SEM, n = 16) and a 2.6 +/- 0.3-fold increase in monocyte adhesion (n = 7) over basal levels. IL-1-treated endothelial monolayers also supported increased adhesion of the promyelocytic cell line HL-60 and the monocytelike cell line U937 (33.0 +/- 6.0-fold, n = 6 and 4.9 +/- 0.5-fold, n = 15, respectively). In contrast, selective IL-1 pretreatment of leukocytes, or the addition of IL-1 during the adhesion assay, did not alter endothelial-leukocyte adhesion. Conditioned medium from IL-1-treated endothelial cultures also did not promote leukocyte adhesion to untreated monolayers. IL-1 induction of endothelial adhesivity was concentration dependent (maximum, 10 U/ml), time dependent (peak, 4-6 h), and reversible, was blocked by cycloheximide (10 micrograms/ml) or actinomycin D (5 micrograms/ml) but not by acetylsalicylic acid (100 microM), and occurred without detectable endothelial cell damage. IL-1 treatment of SV40-transformed human endothelial cells and dermal fibroblasts did not increase their adhesivity for leukocytes. These data suggest that IL-1 can act selectively on human vascular endothelium to increase its adhesivity for circulating blood leukocytes, and thus to localize leukocyte-vessel wall interactions at sites of inflammation in vivo.

1,076 citations