scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Induction of Airway Mucus Production By T Helper 2 (Th2) Cells: A Critical Role For Interleukin 4 In Cell Recruitment But Not Mucus Production

Lauren Cohn1, Robert J. Homer1, Anthony Marinov1, John A. Rankin1, Kim Bottomly1 
17 Nov 1997-Journal of Experimental Medicine (The Rockefeller University Press)-Vol. 186, Iss: 10, pp 1737-1747
TL;DR: It is suggested that IL-4 is crucial for Th2 cell recruitment to the lung and for induction of inflammation, but has no direct role in mucus production.
Abstract: Airway inflammation is believed to stimulate mucus production in asthmatic patients. Increased mucus secretion is an important clinical symptom and contributes to airway obstruction in asthma. Activated CD4 Th1 and Th2 cells have both been identified in airway biopsies of asthmatics but their role in mucus production is not clear. Using CD4 T cells from mice transgenic for the OVA-specific TCR, we studied the role of Th1 and Th2 cells in airway inflammation and mucus production. Airway inflammation induced by Th2 cells was comprised of eosinophils and lymphocytes; features found in asthmatic patients. Additionally, there was a marked increase in mucus production in mice that received Th2 cells and inhaled OVA, but not in mice that received Th1 cells. However, OVA-specific Th2 cells from IL-4–deficient mice were not recruited to the lung and did not induce mucus production. When this defect in homing was overcome by administration of TNF-α, IL-4 −/− Th2 cells induced mucus as effectively as IL-4 +/+ Th2 cells. These studies establish a role for Th2 cells in mucus production and dissect the effector functions of IL-4 in these processes. These data suggest that IL-4 is crucial for Th2 cell recruitment to the lung and for induction of inflammation, but has no direct role in mucus production.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Results provide a potential explanation for the dominant role of IL-13 in induction of goblet cell hyperplasia and airway hyperresponsiveness in asthma.
Abstract: Although IL-4 signals through two receptors, IL-4R alpha/common gamma-chain (gamma(c)) and IL-4R alpha/IL-13R alpha1, and only the latter is also activated by IL-13, IL-13 contributes more than IL-4 to goblet cell hyperplasia and airway hyperresponsiveness in murine asthma. To determine whether unique gene induction by IL-13 might contribute to its greater proasthmatic effects, mice were inoculated intratracheally with IL-4 or IL-13, and pulmonary gene induction was compared by gene microarray and real-time PCR. Only the collagen alpha2 type VI (Ca2T6) gene and three small proline-rich protein (SPRR) genes were reproducibly induced > 4-fold more by IL-13 than by IL-4. Preferential IL-13 gene induction was not attributable to B cells, T cells, or differences in cytokine potency. IL-4 signaling through IL-4R alpha/gamma(c) suppresses Ca2T6 and SPRR gene expression in normal mice and induces these genes in RAG2/gamma(c)-deficient mice. Although IL-4, but not IL-13, induces IL-12 and IFN-gamma, which suppress many effects of IL-4, IL-12 suppresses only the Ca2T6 gene, and IL-4-induced IFN-gamma production does not suppress the Ca2T6 or SPRR genes. Thus, IL-4 induces genes in addition to IL-12 that suppress STAT6-mediated SPRR gene induction. These results provide a potential explanation for the dominant role of IL-13 in induction of goblet cell hyperplasia and airway hyperresponsiveness in asthma.

55 citations

Journal ArticleDOI
TL;DR: Airway inflammation, goblet cell metaplasia, epithelial cell damage, and nonspecific airway reactivity to methacholine challenge, measured 24 h following the last challenge, were reduced to baseline levels in TNF-alpha null mice and athymic mice, suggesting that, unlike protein antigens, T NF-alpha has multiple and central roles in TDI-induced asthma, influencing both nonspespecific inflammatory processes and specific immune events.
Abstract: Nearly 9 million workers are exposed to chemical agents associated with occupational asthma, with isocyanates representing the chemical class most responsible. Isocyanate-induced asthma has been difficult to diagnose and control, in part because the biologic mechanisms responsible for the disease and the determinants of exposure have not been well defined. Isocyanate-induced asthma is characterized by airway inflammation, and we hypothesized that inflammation is a prerequisite of isocyanate-induced asthma, with tumor necrosis factor (TNF)-alpha being critical to this process. To explore this hypothesis, wild-type mice, athymic mice, TNF-alpha receptor knockout (TNFR), and anti-TNF-alpha antibody-treated mice were sensitized by subcutaneous injection (20 micro l on Day 1; 5 micro l, Days 4 and 11), and challenged 7 d later by inhalation (100 ppb; Days 20, 22, and 24) with toluene diisocyanate (TDI). Airway inflammation, goblet cell metaplasia, epithelial cell damage, and nonspecific airway reactivity to methacholine challenge, measured 24 h following the last challenge, were reduced to baseline levels in TNF-alpha null mice and athymic mice. TNF-alpha deficiency also markedly abrogated TDI-induced Th2 cytokines in airway tissues, indicating a role in the development of Th2 responses. Despite abrogation of all indicators of asthma pathology, TNF-alpha neutralization had no effect on serum IgE levels or IgG-specific TDI antibodies, suggesting the lack of importance of a humoral response in the manifestation of TDI-induced asthma. Instillation studies with fluorescein-conjugated isothiocyanate and TDI suggested that TNF-alpha deficiency also resulted in a significant reduction in the migration of airway dendritic cells to the draining lymph nodes. Taken together, these results suggest that, unlike protein antigens, TNF-alpha has multiple and central roles in TDI-induced asthma, influencing both nonspecific inflammatory processes and specific immune events.

55 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrated that the allergen-induced CD11b(+) CD11c(int) macrophage expressing CC chemokine receptor 3 (CCR3) in the lung performs a crucial function in the induction of eosinophilic asthma in a murine model.
Abstract: Although the recruitment of macrophages to the lung is a central feature of airway inflammation, its function in ongoing T(h)2 cell-mediated eosinophilic airway inflammation remains controversial. Here, we have demonstrated that the allergen-induced CD11b(+) CD11c(int) macrophage expressing CC chemokine receptor 3 (CCR3) in the lung performs a crucial function in the induction of eosinophilic asthma in a murine model. In the lungs of normal mice, residential cells evidencing high granularity phenotypically evidenced CD11b(int) CD11c(+) or CD11b(+) CD11c(int) cells, appearing at a 2:1 ratio. After allergen challenge, however, this reverses dramatically, up to a ratio of one to six. Approximately 91% of increased CD11b(+) CD11c(int) cells evidenced the expression of the CCR3 eotaxin receptor, but not other chemokine receptors, such as CCR5 and CXCR4. Interestingly, the CD11b(+) CD11c(int) cells purified from the lungs of OVA (ovalbumin)-sensitized and challenged mice evidenced higher antigen-presenting activity than was observed in CD11b(int) CD11c(+) cells. In order to investigate the in vivo function of CD11b(+) CD11c(int) cells, the cells were isolated from the lungs of OVA-sensitized and challenged mice and then adoptively transferred prior to the allergen challenge of normal mice. In the CD11b(+) CD11c(int)-transferred mice airway hyperresponsiveness, eosinophilic inflammation in the lung and T(h)2 cytokine secretion in the bronchoalveolar lavage fluids were significantly enhanced as the result of OVA challenge, as compared with the mice that received OVA-primed CD90(+) T cells or CD11b(int) CD11c(+) cells. These findings show that CD11b(+) CD11c(int) macrophages expressing CCR3 as key pro-inflammatory cells are both necessary and sufficient for allergen-specific T cell stimulation during ongoing eosinophilic airway inflammation.

54 citations

Journal ArticleDOI
TL;DR: The results show that the migration of S. venezuelensis larvae through the lungs of infected rats induces a local eosinophilic inflammation process which is mostly focal and parenchymal for rats infected a single time and which is peribronchial after multiple infections.
Abstract: Infection by nematode parasites with a pulmonary migration in their life cycle and allergic asthma are two highly prevalent diseases in humans; therefore, one may expect both may occur concomitantly. There is a predominant and essential role of Th2 lymphocytes in the mechanisms underlying the control of parasite elimination as well as in the pathology observed in the asthmatic lung. The consequences of such situations have been explored, with controversial results, justifying the development of experimental models in which the relationship between allergic airway inflammation and helminth infection might be evaluated. The present work describes the inflammatory, humoral, and functional changes that occur in the lung of rats after single (subcutaneous inoculation of 1,500 L3 larvae) or multiple (five weekly subcutaneous inoculations of 1,500 L3 larvae) Strongyloides venezuelensis infections. The results show that the migration of S. venezuelensis larvae through the lungs of infected rats induces a local eosinophilic inflammation process which is mostly focal and parenchymal for rats infected a single time and which is peribronchial after multiple infections. The inflammatory process is accompanied by mucus hypersecretion, thickening of bronchial epithelial and muscle layers, and local increase in immunoglobulin E concentrations that peak after 5 to 7 days and are resolved after 12 days of single or multiple infections. The peak of lung immunopathologic changes observed in infected rats coincides with lung airway hyperresponsiveness (AHR), a key functional alteration in asthma. We propose that this experimental model is ideal to carry out further studies on immunoprotection against nematode infection versus immunopathology of allergic airway inflammation.

54 citations


Cites background from "Induction of Airway Mucus Productio..."

  • ...TNF- is known to regulate the expression of adhesion molecules on vascular endothelium and leukocytes (40), and it may be involved in homing of Th2 cells to sites of allergic inflammation (12) and in regulating Th2 cytokine-mediated immune response at mucosal sites (3)....

    [...]

Journal ArticleDOI
TL;DR: An overview of therapeutic strategies targeting Th2 memory cells in allergic asthma is presented, emphasizing Th2 generation, differentiation, activation, migration, effector function, and survival.

54 citations

References
More filters
Journal Article
TL;DR: A panel of antigen-specific mouse helper T cell clones was characterized according to patterns of lymphokine activity production, and two types of T cell were distinguished.
Abstract: A panel of antigen-specific mouse helper T cell clones was characterized according to patterns of lymphokine activity production, and two types of T cell were distinguished. Type 1 T helper cells (TH1) produced IL 2, interferon-gamma, GM-CSF, and IL 3 in response to antigen + presenting cells or to Con A, whereas type 2 helper T cells (TH2) produced IL 3, BSF1, and two other activities unique to the TH2 subset, a mast cell growth factor distinct from IL 3 and a T cell growth factor distinct from IL 2. Clones representing each type of T cell were characterized, and the pattern of lymphokine activities was consistent within each set. The secreted proteins induced by Con A were analyzed by biosynthetic labeling and SDS gel electrophoresis, and significant differences were seen between the two groups of T cell line. Both types of T cell grew in response to alternating cycles of antigen stimulation, followed by growth in IL 2-containing medium. Examples of both types of T cell were also specific for or restricted by the I region of the MHC, and the surface marker phenotype of the majority of both types was Ly-1+, Lyt-2-, L3T4+, Both types of helper T cell could provide help for B cells, but the nature of the help differed. TH1 cells were found among examples of T cell clones specific for chicken RBC and mouse alloantigens. TH2 cells were found among clones specific for mouse alloantigens, fowl gamma-globulin, and KLH. The relationship between these two types of T cells and previously described subsets of T helper cells is discussed.

7,567 citations


"Induction of Airway Mucus Productio..." refers background in this paper

  • ...The lower limit of sensitivity for each of the ELISAs was 0.6 ng/ml (IFNg ), 5 pg/ml (IL-4), 0.010 ng/ml (IL-5), and 200 pg/ml (IL-10)....

    [...]

  • ...CD4 Th2 cells make a different panel of cytokines, including IL-4, IL-5, and IL-10 (17, 18)....

    [...]

  • ...Assays were standardized with recombinant IFNg , IL-5, IL-10 (Endogen), and IL-4 (Collaborative Research, Inc.)....

    [...]

  • ...1 A ), and IL-10 (data not shown)....

    [...]

  • ...IL-4 2/2 OVA-specific Th2 cells produced comparable levels of IL-5 and IL-10 when compared to IL-4 1/1 OVA-specific Th2 cells, but IL-4 was produced only by IL-4 1/1 Th2 cells....

    [...]

Journal ArticleDOI
TL;DR: Atopic asthma is associated with activation in the bronchi of the interleukin-3, 4, and 5 and GM-CSF gene cluster, a pattern compatible with predominant activation of the TH2-like T-cell population.
Abstract: Background. In atopic asthma, activated T helper lymphocytes are present in bronchial-biopsy specimens and bronchoalveolar-lavage (BAL) fluid, and their production of cytokines may be important in the pathogenesis of this disorder. Different patterns of cytokine release are characteristic of certain subgroups of T helper cells, termed TH1 and TH2, the former mediating delayed-type hypersensitivity and the latter mediating IgE synthesis and eosinophilia. The pattern of cytokine production in atopic asthma is unknown. Methods. We assessed cells obtained by BAL in subjects with mild atopic asthma and in normal control subjects for the expression of messenger RNA (mRNA) for interleukin-2, 3, 4, and 5, granulocytemacrophage colony-stimulating factor (GM-CSF), and interferon gamma by in situ hybridization with 32P-labeled complementary RNA. Localization of mRNA to BAL T cells was assessed by simultaneous in situ hybridization and immunofluorescence and by in situ hybridization after immunomagnetic enrichment or...

2,898 citations


"Induction of Airway Mucus Productio..." refers background in this paper

  • ...Th2 cells secreting IL-4 and IL-5 have been shown to be present and activated in the bronchial wall of asthmatic individuals (9, 23)....

    [...]

Journal ArticleDOI
TL;DR: This paper used hybridoma monoclonal antibodies obtained after immunization of mice with rat cells to study rat cell-surface antigens present on subpopulations of rat lymphocytes.
Abstract: Xenogeneic immunizations have the advantage of detecting a wide range of antigenic determinants because many commonly occurring proteins have diverged significantly during the course of evolution and are thus antigenic in other species. The broadness of xenogeneic responses, however, means that the antisera they produce are usually complex and require extensive absorptions to make them specific for a single antigen. This problem has now been overcome by generating hybridomas producing monoclonal antibodies (Kohler & Milstein 1975). These permit dissection ofthe xenogeneic response so that large amounts of individual antibodies can be obtained, each of which recognizes only one of the determinants recognized by a broadly reactive conventional antiserum. Williams et al. (1977) used hybridoma monoclonal antibodies obtained after immunizations of mice with rat cells to study rat cell-surface antigens present on subpopulations of rat lymphocytes, i.e., differentiation antigens. Springer et al. (1978a) and Stern et al. (1978) used a similar approach to study mouse lymphocyte antigens. They prepared monoclonal antibodies by immunizing rats with mouse lymphocytes and showed that these monoclonals recognized previously undetected mouse cell surface determinants including a glycoprotein antigen that appears to be specific for macrophages (Springer et al. 1978b). Trowbridge (1978) also used rat anti-mouse immunizations to generate a monoclonal antibody against the non-polymorphic lymphocyte surface antigen T200.

1,916 citations


"Induction of Airway Mucus Productio..." refers methods in this paper

  • ...To generate Th1 or Th2 cells from DO11.10 mice, CD4 T cells were isolated by negative selection as previously described (31) using mAbs to CD8 (clone 53-6.72, clone 2.43 [ 32 ]), Class II MHC I-A d (212.A1 [33]) and anti‐Ig-coated magnetic beads (Advanced Magnetics, Inc....

    [...]

Journal ArticleDOI
21 Dec 1990-Science
TL;DR: Results provide direct evidence for the in vivo role of apoptosis in the development of antigen-induced tolerance in mice transgenic for a T cell receptor that reacts to this peptide.
Abstract: In order to examine the mechanisms by which clonal deletion of autoreactive T cells occurs, a peptide antigen was used to induce deletion of antigen-reactive thymocytes in vivo. Mice transgenic for a T cell receptor (TCR) that reacts to this peptide contain thymocytes that progress from the immature to the mature phenotype. Intraperitoneal administration of the peptide antigen to transgenic mice results in a rapid deletion of the immature CD4+ CD8+ TCRlo thymocytes. Apoptosis of cortical thymocytes can be seen within 20 hours of treatment. These results provide direct evidence for the in vivo role of apoptosis in the development of antigen-induced tolerance.

1,831 citations

Journal ArticleDOI
01 Nov 1991-Science
TL;DR: Some but not all of the in vitro properties of IL-4 are critical for the physiology of the immune system in vivo, but the serum levels of IgG1 and IgE are strongly reduced.
Abstract: Interleukin-4 (IL-4) promotes the growth and differentiation of many hematopoietic cells in vitro; in particular, it directs the immunoglobulin (Ig) class switch to IgG1 and IgE. Mice homozygous for a mutation that inactivates the IL-4 gene were generated to test the requirement for IL-4 in vivo. In the mutant mice T and B cell development was normal, but the serum levels of IgG1 and IgE were strongly reduced. The IgG1 dominance in a T cell-dependent immune response was lost, and IgE was not detectable upon nematode infection. Thus, some but not all of the in vitro properties of IL-4 are critical for the physiology of the immune system in vivo.

1,262 citations