scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Industry 4.0: A Survey on Technologies, Applications and Open Research Issues

TL;DR: A comprehensive review on Industry 4.0 is conducted and presents an overview of the content, scope, and findings by examining the existing literatures in all of the databases within the Web of Science.
About: This article is published in Journal of Industrial Information Integration.The article was published on 2017-06-01. It has received 1906 citations till now. The article focuses on the topics: Industry 4.0 & Enterprise architecture.
Citations
More filters
Journal ArticleDOI
TL;DR: The state of the art in the area of Industry 4.0 as it relates to industries is surveyed, with a focus on China's Made-in-China 2025 and formal methods and systems methods crucial for realising Industry 5.0.
Abstract: Rapid advances in industrialisation and informatisation methods have spurred tremendous progress in developing the next generation of manufacturing technology. Today, we are on the cusp of the Fourth Industrial Revolution. In 2013, amongst one of 10 ‘Future Projects’ identified by the German government as part of its High-Tech Strategy 2020 Action Plan, the Industry 4.0 project is considered to be a major endeavour for Germany to establish itself as a leader of integrated industry. In 2014, China’s State Council unveiled their ten-year national plan, Made-in-China 2025, which was designed to transform China from the world’s workshop into a world manufacturing power. Made-in-China 2025 is an initiative to comprehensively upgrade China’s industry including the manufacturing sector. In Industry 4.0 and Made-in-China 2025, many applications require a combination of recently emerging new technologies, which is giving rise to the emergence of Industry 4.0. Such technologies originate from different disciplines ...

1,780 citations


Cites background from "Industry 4.0: A Survey on Technolog..."

  • ...…technologies in the manufacturing industry, and it mainly includes enabling technologies such as the cyberphysical systems (CPS), Internet of Things (IoT) and cloud computing (Hermann, Pentek, and Otto 2016; Jasperneite 2012; Kagermann, Wahlster, and Helbig 2013; Lasi et al. 2014; Lu 2017a, 2017b)....

    [...]

Journal ArticleDOI
TL;DR: The findings show that Industry 4.0 is related to a systemic adoption of the front-end technologies, in which Smart Manufacturing plays a central role, and the implementation of the base technologies is challenging companies, since big data and analytics are still low implemented in the sample studied.

1,245 citations

Journal ArticleDOI
TL;DR: In this paper, the authors conduct a systematic and content-centric review of literature based on a six-stage approach to identify key design principles and technology trends of Industry 4.0.
Abstract: The purpose of this paper is to conduct a state-of-the-art review of the ongoing research on the Industry 4.0 phenomenon, highlight its key design principles and technology trends, identify its architectural design and offer a strategic roadmap that can serve manufacturers as a simple guide for the process of Industry 4.0 transition.,The study performs a systematic and content-centric review of literature based on a six-stage approach to identify key design principles and technology trends of Industry 4.0. The study further benefits from a comprehensive content analysis of the 178 documents identified, both manually and via IBM Watson’s natural language processing for advanced text analysis.,Industry 4.0 is an integrative system of value creation that is comprised of 12 design principles and 14 technology trends. Industry 4.0 is no longer a hype and manufacturers need to get on board sooner rather than later.,The strategic roadmap presented in this study can serve academicians and practitioners as a stepping stone for development of a detailed strategic roadmap for successful transition from traditional manufacturing into the Industry 4.0. However, there is no one-size-fits-all strategy that suits all businesses or industries, meaning that the Industry 4.0 roadmap for each company is idiosyncratic, and should be devised based on company’s core competencies, motivations, capabilities, intent, goals, priorities and budgets.,The first step for transitioning into the Industry 4.0 is the development of a comprehensive strategic roadmap that carefully identifies and plans every single step a manufacturing company needs to take, as well as the timeline, and the costs and benefits associated with each step. The strategic roadmap presented in this study can offer as a holistic view of common steps that manufacturers need to undertake in their transition toward the Industry 4.0.,The study is among the first to identify, cluster and describe design principles and technology trends that are building blocks of the Industry 4.0. The strategic roadmap for Industry 4.0 transition presented in this study is expected to assist contemporary manufacturers to understand what implementing the Industry 4.0 really requires of them and what challenges they might face during the transition process.

773 citations

Journal ArticleDOI
TL;DR: This paper explores the role of Internet of Things (IoT) and its impact on supply chain management (SCM) through an extensive literature review and finds that most studies have focused on conceptualising the impact of IoT with limited analytical models and empirical studies.
Abstract: This paper explores the role of Internet of Things (IoT) and its impact on supply chain management (SCM) through an extensive literature review. Important aspects of IoT in SCM are covered including IoT definition, main IoT technology enablers and various SCM processes and applications. We offer several categorisation of the extant literature, such as based on methodology, industry sector and focus on a classification based on major supply chain processes. In addition, a bibliometric analysis of the literature is also presented. We find that most studies have focused on conceptualising the impact of IoT with limited analytical models and empirical studies. In addition, most studies have focused on the delivery supply chain process and the food and manufacturing supply chains. Areas of future SCM research that can support IoT implementation are also identified.

727 citations


Cites background from "Industry 4.0: A Survey on Technolog..."

  • ...0 environment can be found in Lu (2017). Smart manufacturing enables smarter decisions and more efficient operations through factory and supply chain visibility based on real-time information....

    [...]

  • ...Martínez-Sala et al. (2009) proposed a solution that tracks a returnable ecological system for packaging, transport, storage and display of products over the entire supply chain....

    [...]

  • ...Martínez-Sala et al. (2009) proposed a solution that tracks a returnable ecological system for packaging, transport, storage and display of products over the entire supply chain. Nativi and Lee (2012) study a manufacturer and two suppliers, one of whom is a material recycler, supply chain....

    [...]

  • ...A survey on technologies in an industry 4.0 environment can be found in Lu (2017)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors present a systematic analysis of the sustainability functions of Industry 4.0, including energy sustainability, harmful emission reduction, and social welfare improvement, and show that sophisticated precedence relationships exist among various sustainability functions.

664 citations

References
More filters
Journal ArticleDOI
19 Jun 2014

2,526 citations

Proceedings ArticleDOI
05 Jan 2016
TL;DR: Design principles of Industrie 4.0 are identified so that academics may be enabled to further investigate on the topic, while practitioners may find assistance in identifying appropriate scenarios.
Abstract: The increasing integration of the Internet of Everything into the industrial value chain has built the foundation for the next industrial revolution called Industrie 4.0. Although Industrie 4.0 is currently a top priority for many companies, research centers, and universities, a generally accepted understanding of the term does not exist. As a result, discussing the topic on an academic level is difficult, and so is implementing Industrie 4.0 scenarios. Based on a quantitative text analysis and a qualitative literature review, the paper identifies design principles of Industrie 4.0. Taking into account these principles, academics may be enabled to further investigate on the topic, while practitioners may find assistance in identifying appropriate scenarios. A case study illustrates how the identified design principles support practitioners in identifying Industrie 4.0 scenarios.

1,954 citations

Journal ArticleDOI
TL;DR: This paper addresses the trends of manufacturing service transformation in big data environment, as well as the readiness of smart predictive informatics tools to manage big data, thereby achieving transparency and productivity.

1,449 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a state-of-the-art review of Industry 4.0 based on recent developments in research and practice, and present an overview of different opportunities for sustainable manufacturing in Industry 5.0.

1,276 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the developments of Industry 4.0 within the literature and review the associated research streams. And they assess the practical implications, conducting face-to-face interviews with managers from the industry as well as from the consulting business.
Abstract: The German manufacturing industry has to withstand an increasing global competition on product quality and production costs. As labor costs are high, several industries have suffered severely under the relocation of production facilities towards aspiring countries, which have managed to close the productivity and quality gap substantially. Established manufacturing companies have recognized that customers are not willing to pay large price premiums for incremental quality improvements. As a consequence, many companies from the German manufacturing industry adjust their production focusing on customized products and fast time to market. Leveraging the advantages of novel production strategies such as Agile Manufacturing and Mass Customization, manufacturing companies transform into integrated networks, in which companies unite their core competencies. Hereby, virtualization of the processand supply-chain ensures smooth inter-company operations providing real-time access to relevant product and production information for all participating entities. Boundaries of companies deteriorate, as autonomous systems exchange data, gained by embedded systems throughout the entire value chain. By including Cyber-PhysicalSystems, advanced communication between machines is tantamount to their dialogue with humans. The increasing utilization of information and communication technology allows digital engineering of products and production processes alike. Modular simulation and modeling techniques allow decentralized units to flexibly alter products and thereby enable rapid product innovation. The present article describes the developments of Industry 4.0 within the literature and reviews the associated research streams. Hereby, we analyze eight scientific journals with regards to the following research fields: Individualized production, end-to-end engineering in a virtual process chain and production networks. We employ cluster analysis to assign sub-topics into the respective research field. To assess the practical implications, we conducted face-to-face interviews with managers from the industry as well as from the consulting business using a structured interview guideline. The results reveal reasons for the adaption and refusal of Industry 4.0 practices from a managerial point of view. Our findings contribute to the upcoming research stream of Industry 4.0 and support decisionmakers to assess their need for transformation towards Industry 4.0 practices. Keywords—Industry 4.0., Mass Customization, Production networks, Virtual Process-Chain. Malte Brettel, chairholder, is with the Aachen University (RWTH), Kackertstraße 7, 52072 Aachen (e-mail: brettel@win.rwth-aachen.de). Niklas Friederichsen is with the Aachen University (RWTH), Kackertstraße 7, 52072 Aachen, (corresponding author; phone: +49/(0)241 80 99397; e-mail: friederichsen@win.rwth-aachen.de). Michael Keller and Marius Rosenberg are with the Aachen University (RWTH), Kackertstraße 7, 52072 Aachen (e-mail: keller@win.rwthaachen.de, rosenberg@win.rwth-aachen.de).

1,184 citations