scispace - formally typeset
Open AccessJournal ArticleDOI

Inference of gene regulatory networks from time series by Tsallis entropy

Reads0
Chats0
TLDR
The use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles, and a remarkable improvement of accuracy was observed by reducing the number of false connections in the inferred topology by the non-Shannon entropy.
Abstract
Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 ≤ q ≤ 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/ dimreduction and http://code.google.com/p/dimreduction/.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Random graphs

TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Journal ArticleDOI

JIDT: An information-theoretic toolkit for studying the dynamics of complex systems

TL;DR: The Java Information Dynamics Toolkit (JIDT) is introduced, a Google code project which provides a standalone, (GNU GPL v3 licensed) open-source code implementation for empirical estimation of information-theoretic measures from time-series data.
Journal ArticleDOI

JIDT: an information-theoretic toolkit for studying the dynamics of complex systems

TL;DR: The Java Information Dynamics Toolkit (JIDT) as discussed by the authors is a toolkit for empirical estimation of Shannon information-theoretic measures from time-series data, focusing on quantifying information storage, transfer and modification.
Journal ArticleDOI

MIDER: Network inference with mutual information distance and entropy reduction

TL;DR: MIDER is a method for inferring network structures with information theoretic concepts that may be applied to any type of network, cellular or otherwise and provides a representation of the network in which the distance among nodes indicates their statistical closeness.
Journal ArticleDOI

Adjusting for chance clustering comparison measures

TL;DR: This paper solves the key technical challenge of analytically computing the expected value and variance of generalized IT measures and proposes guidelines for using ARI and AMI as external validation indices.
References
More filters
Journal ArticleDOI

A mathematical theory of communication

TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Journal ArticleDOI

Emergence of Scaling in Random Networks

TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Journal ArticleDOI

The Structure and Function of Complex Networks

Mark Newman
- 01 Jan 2003 - 
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Journal ArticleDOI

Complex networks: Structure and dynamics

TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.
Journal ArticleDOI

Possible generalization of Boltzmann-Gibbs statistics

TL;DR: In this paper, a generalized form of entropy was proposed for the Boltzmann-Gibbs statistics with the q→1 limit, and the main properties associated with this entropy were established, particularly those corresponding to the microcanonical and canonical ensembles.
Related Papers (5)