Inferences for joint modelling of repeated ordinal scores and time to event data
16 Aug 2010-Computational and Mathematical Methods in Medicine (Hindawi Publishing Corporation)-Vol. 11, Iss: 3, pp 281-295
...read more
Content maybe subject to copyright Report
Citations
More filters
[...]
TL;DR: Joint model analysis was more parsimonious as compared to separate analysis, as it reduces type I error and subject-specific analysis improved its model fit, and the observed correlation between the outcomes that have emerged from the association of intercepts is validated.
Abstract: Adherence and CD4 cell count change measure the progression of the disease in HIV patients after the commencement of HAART. Lack of information about associated factors on adherence to HAART and CD4 cell count reduction is a challenge for the improvement of cells in HIV positive adults. The main objective of adopting joint modeling was to compare separate and joint models of longitudinal repeated measures in identifying long-term predictors of the two longitudinal outcomes: CD4 cell count and adherence to HAART. A longitudinal retrospective cohort study was conducted to examine the joint predictors of CD4 cell count change and adherence to HAART among HIV adult patients enrolled in the first 10 months of the year 2008 and followed-up to June 2012. Joint model was employed to determine joint predictors of two longitudinal response variables over time. Furthermore, the generalized linear mixed effect model had been used for specification of the marginal distribution, conditional to correlated random effect. A total of 792 adult HIV patients were studied to analyze the longitudinal joint model study. The result from this investigation revealed that age, weight, baseline CD4 cell count, ownership of cell phone, visiting times, marital status, residence area and level of disclosure of the disease to family members had significantly affected both outcomes. From the two-way interactions, time * owner of cell phone, time * sex, age * sex, age * level of education as well as time * level of education were significant for CD4 cell count change in the longitudinal data analysis. The multivariate joint model with linear predictor indicates that CD4 cell count change was positively correlated (p ≤ 0.0001) with adherence to HAART. Hence, as adherence to HAART increased, CD4 cell count also increased; and those patients who had significant CD4 cell count change at each visiting time had been encouraged to be good adherents. Joint model analysis was more parsimonious as compared to separate analysis, as it reduces type I error and subject-specific analysis improved its model fit. The joint model operates multivariate analysis simultaneously; and it has great power in parameter estimation. Developing joint model helps validate the observed correlation between the outcomes that have emerged from the association of intercepts. There should be a special attention and intervention for HIV positive adults, especially for those who had poor adherence and with low CD4 cell count change. The intervention may be important for pre-treatment counseling and awareness creation. The study also identified a group of patients who were with maximum risk of CD4 cell count change. It is suggested that this group of patients needs high intervention for counseling.
22 citations
[...]
TL;DR: A joint model to analyze the structure and intensity of the association between longitudinal measurements of an ordinal marker and time to a relevant event is proposed and is applied to the assessment of breast cancer risk in women attending a population‐based screening program.
Abstract: We propose a joint model to analyze the structure and intensity of the association between longitudinal measurements of an ordinal marker and time to a relevant event. The longitudinal process is defined in terms of a proportional-odds cumulative logit model. Time-to-event is modeled through a left-truncated proportional-hazards model, which incorporates information of the longitudinal marker as well as baseline covariates. Both longitudinal and survival processes are connected by means of a common vector of random effects. General inferences are discussed under the Bayesian approach and include the posterior distribution of the probabilities associated to each longitudinal category and the assessment of the impact of the baseline covariates and the longitudinal marker on the hazard function. The flexibility provided by the joint model makes possible to dynamically estimate individual event-free probabilities and predict future longitudinal marker values. The model is applied to the assessment of breast cancer risk in women attending a population-based screening program. The longitudinal ordinal marker is mammographic breast density measured with the Breast Imaging Reporting and Data System (BI-RADS) scale in biennial screening exams. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
19 citations
[...]
TL;DR: This work proposes to simultaneously model the survival time with a stratified Cox proportional hazards model and the longitudinal categorical outcomes with a generalized linear mixed model to address the dependence between survival time and longitudinal outcomes due to unobserved factors.
Abstract: In biomedical or public health research, it is common for both survival time and longitudinal categorical outcomes to be collected for a subject, along with the subject’s characteristics or risk factors. Investigators are often interested in finding important variables for predicting both survival time and longitudinal outcomes which could be correlated within the same subject. Existing approaches for such joint analyses deal with continuous longitudinal outcomes. New statistical methods need to be developed for categorical longitudinal outcomes. We propose to simultaneously model the survival time with a stratified Cox proportional hazards model and the longitudinal categorical outcomes with a generalized linear mixed model. Random effects are introduced to account for the dependence between survival time and longitudinal outcomes due to unobserved factors. The Expectation–Maximization (EM) algorithm is used to derive the point estimates for the model parameters, and the observed information matrix is adopted to estimate their asymptotic variances. Asymptotic properties for our proposed maximum likelihood estimators are established using the theory of empirical processes. The method is demonstrated to perform well in finite samples via simulation studies. We illustrate our approach with data from the Carolina Head and Neck Cancer Study (CHANCE) and compare the results based on our simultaneous analysis and the separately conducted analyses using the generalized linear mixed model and the Cox proportional hazards model. Our proposed method identifies more predictors than by separate analyses.
5 citations
[...]
TL;DR: This paper proposes to use a mixture of Gaussian distributions as an approximation to this unknown distribution and adopt an Expectation–Maximization (EM) algorithm for computation and demonstrates the proposed method via a number of simulation studies.
Abstract: Joint models with shared Gaussian random effects have been conventionally used in analysis of longitudinal outcome and survival endpoint in biomedical or public health research. However, misspecifying the normality assumption of random effects can lead to serious bias in parameter estimation and future prediction. In this paper, we study joint models of general longitudinal outcomes and survival endpoint but allow the underlying distribution of shared random effect to be completely unknown. For inference, we propose to use a mixture of Gaussian distributions as an approximation to this unknown distribution and adopt an Expectation-Maximization (EM) algorithm for computation. Either AIC and BIC criteria are adopted for selecting the number of mixtures. We demonstrate the proposed method via a number of simulation studies. We illustrate our approach with the data from the Carolina Head and Neck Cancer Study (CHANCE).
4 citations
[...]
TL;DR: PA had the smallest AB-PE and ASE-PE for the longitudinal submodel among the three approaches for the small and moderate sample sizes and JLCM was desirable for the none-association and the large sample size.
Abstract: In recent years, the joint models have been widely used for modeling the longitudinal and time-to-event data simultaneously. In this study, we proposed an approach (PA) to study the longitudinal and survival outcomes simultaneously in heterogeneous populations. PA relaxes the assumption of conditional independence (CI). We also compared PA with joint latent class model (JLCM) and separate approach (SA) for various sample sizes (150, 300, and 600) and different association parameters (0, 0.2, and 0.5). The average bias of parameters estimation (AB-PE), average SE of parameters estimation (ASE-PE), and coverage probability of the 95% confidence interval (CP) among the three approaches were compared. In most cases, when the sample sizes increased, AB-PE and ASE-PE decreased for the three approaches, and CP got closer to the nominal level of 0.95. When there was a considerable association, PA in comparison with SA and JLCM performed better in the sense that PA had the smallest AB-PE and ASE-PE for the longitudinal submodel among the three approaches for the small and moderate sample sizes. Moreover, JLCM was desirable for the none-association and the large sample size. Finally, the evaluated approaches were applied on a real HIV/AIDS dataset for validation, and the results were compared.
3 citations
References
More filters
[...]
TL;DR: In this article, a text designed to make multivariate techniques available to behavioural, social, biological and medical students is presented, which includes an approach to multivariate inference based on the union-intersection and generalized likelihood ratio principles.
Abstract: A text designed to make multivariate techniques available to behavioural, social, biological and medical students. Special features include an approach to multivariate inference based on the union-intersection and generalized likelihood ratio principles.
6,488 citations
Book•
[...]
01 Jan 1976
TL;DR: In this article, a text designed to make multivariate techniques available to behavioural, social, biological and medical students is presented, which includes an approach to multivariate inference based on the union-intersection and generalized likelihood ratio principles.
Abstract: A text designed to make multivariate techniques available to behavioural, social, biological and medical students. Special features include an approach to multivariate inference based on the union-intersection and generalized likelihood ratio principles.
5,797 citations
[...]
TL;DR: In this paper, generalized linear mixed models (GLMM) are used to estimate the marginal quasi-likelihood for the mean parameters and the conditional variance for the variances, and the dispersion matrix is specified in terms of a rank deficient inverse covariance matrix.
Abstract: Statistical approaches to overdispersion, correlated errors, shrinkage estimation, and smoothing of regression relationships may be encompassed within the framework of the generalized linear mixed model (GLMM). Given an unobserved vector of random effects, observations are assumed to be conditionally independent with means that depend on the linear predictor through a specified link function and conditional variances that are specified by a variance function, known prior weights and a scale factor. The random effects are assumed to be normally distributed with mean zero and dispersion matrix depending on unknown variance components. For problems involving time series, spatial aggregation and smoothing, the dispersion may be specified in terms of a rank deficient inverse covariance matrix. Approximation of the marginal quasi-likelihood using Laplace's method leads eventually to estimating equations based on penalized quasilikelihood or PQL for the mean parameters and pseudo-likelihood for the variances. Im...
4,133 citations
"Inferences for joint modelling of r..." refers background in this paper
[...]
[...]
TL;DR: In this article, the Cox regression model for censored survival data is extended to a model where covariate processes have a proportional effect on the intensity process of a multivariate counting process, allowing for complicated censoring patterns and time dependent covariates.
Abstract: The Cox regression model for censored survival data specifies that covariates have a proportional effect on the hazard function of the life-time distribution of an individual. In this paper we discuss how this model can be extended to a model where covariate processes have a proportional effect on the intensity process of a multivariate counting process. This permits a statistical regression analysis of the intensity of a recurrent event allowing for complicated censoring patterns and time dependent covariates. Furthermore, this formulation gives rise to proofs with very simple structure using martingale techniques for the asymptotic properties of the estimators from such a model. Finally an example of a statistical analysis is included.
3,474 citations
[...]
TL;DR: In this article, a related model for association in bivariate survivorship time distributions is proposed for the analysis of familial tendency in disease incidence, which is related to more specifically epidemiological models.
Abstract: SUMMARY The application of Cox's (1972) regression model for censored survival data to epidemiological studies of chronic disease incidence is discussed. A related model for association in bivariate survivorship time distributions is proposed for the analysis of familial tendency in disease incidence. The possible extension of the model to general multivariate survivorship distributions is indicated. This paper is concerned with a problem in the analysis of epidemiological studies of chronic disease incidence. In contrast with problems in the epidemiology of infectious disease, such analysis usually assumes that incidence of disease in different individuals represents independent events, the occurrence of which is influenced by measurable factors describing individuals and their environment. However, in the study of familial tendency in chronic disease incidence, this assumption is called into question. Comparisons of parents and offspring and sibling comparisons investigate possible relationships between disease incidence in related individuals and such studies provide interesting analytical difficulties. Here, this problem is treated as one of estimating association in multivariate life tables. In ? 2 it is shown that epidemiological incidence studies may be regarded as being concerned primarily with the study of the distribution of the age at incidence and that Cox's (1972) regression model for the analysis of censored survival time data may readily be applied to incidence data and is closely related to more specifically epidemiological models. In later sections, a related model for bivariate life tables is developed and applied to the problem of demonstrating association in disease incidence in ordered pairs of individuals. The possible extension of the model into more dimensions is indicated.
1,860 citations
"Inferences for joint modelling of r..." refers methods in this paper
[...]