scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Influence of Amino Acid Mutations and Small Molecules on Targeted Inhibition of Proteins Involved in Cancer.

TL;DR: Understanding and bridging mutations and altered PPIs will provide insights into the alarming signals leading to massive malfunctioning of a biological system in various diseases.
Abstract: Background Protein-protein interactions (PPIs) are of crucial importance in regulating the biological processes of cells both in normal and diseased conditions. Significant progress has been made in targeting PPIs using small molecules and achieved promising results. However, PPI drug discovery should be further accelerated with better understanding of chemical space along with various functional aspects. Objective In this review, we focus on the advancements in computational research for targeted inhibition of protein-protein interactions involved in cancer. Methods Here, we mainly focused on two aspects: (i) understanding the key roles of amino acid mutations in epidermal growth factor receptor (EGFR) as well as mutation-specific inhibitors and (ii) design of small molecule inhibitors for Bcl-2 to disrupt PPIs. Results The paradigm of PPI inhibition to date reflect the certainty that inclination towards novel and versatile strategies enormously dictate the success of PPI inhibition. As the chemical space highly differs from the normal drug like compounds the lead optimization process has to be given the utmost priority to ensure the clinical success. Here, we provided a broader perspective on effect of mutations in oncogene EGFR connected to Bcl-2 PPIs and focused on the potential challenges. Conclusion Understanding and bridging mutations and altered PPIs will provide insights into the alarming signals leading to massive malfunctioning of a biological system in various diseases. Finding rational elucidations from a pharmaceutical stand point will presumably broaden the horizons in future.
Citations
More filters
Journal ArticleDOI
TL;DR: Drug repositioning introduces an affordable and efficient strategy to discover novel drug action, especially when integrated with recent systems biology driven stratagem, in combination with conventional anticancer agents to combat drug resistance in the near future.

20 citations

Journal ArticleDOI
TL;DR: A novel attempt in terms of blending scaffold hopping and hierarchical virtual screening in order to assess the hybrid method for its efficacy in identifying active lead molecules for emerging PPI target Bcl-2 (B-cell Lymphoma 2).
Abstract: BACKGROUND Though virtual screening methods have proven to be potent in various instances, the technique is practically incomplete to quench the need of drug discovery process. Thus, the quest for novel designing approaches and chemotypes for improved efficacy of lead compounds has been intensified and logistic approaches such as scaffold hopping and hierarchical virtual screening methods were evolved. Till now, in all the previous attempts these two approaches were applied separately. OBJECTIVE In the current work, we made a novel attempt in terms of blending scaffold hopping and hierarchical virtual screening. The prime objective is to assess the hybrid method for its efficacy in identifying active lead molecules for emerging PPI target Bcl-2 (B-cell Lymphoma 2). METHODS We designed novel scaffolds from the reported cores and screened a set of 8270 compounds using both scaffold hopping and hierarchical virtual screening for Bcl-2 protein. Also, we enumerated the libraries using clustering, PAINS filtering, physicochemical characterization and SAR matching. RESULTS We generated a focused library of compounds towards Bcl-2 interface, screened the 8270 compounds and identified top hits for seven families upon fine filtering with PAINS algorithm, features, SAR mapping, synthetic accessibility and similarity search. Our approach retrieved a set of 50 lead compounds. CONCLUSION Finding rational approach meeting the needs of drug discovery process for PPI targets is the need of the hour which can be fulfilled by an extended scaffold hopping approach resulting in focused PPI targeting by providing novel leads with better potency.

5 citations

References
More filters
Journal ArticleDOI
TL;DR: The design and synthesis of α-helix peptidomimetics using inverse electron demand Diels–Alder reactions is described and the potency of the resulting pyridazine-based library to disrupt the Bak/Bcl-X L interaction was tested using an in vitro fluorescence polarization assay.

73 citations

Journal ArticleDOI
TL;DR: It is proposed that packing nearby protein-protein or domain-domain interfaces is a major route to the formation of ligand-binding pockets, and thus, is an intrinsic geometric feature of protein structure.
Abstract: Protein-protein and protein-ligand interactions are ubiquitous in a biological cell. Here, we report a comprehensive study of the distribution of protein-ligand interaction sites, namely ligand-binding pockets, around protein-protein interfaces where protein-protein interactions occur. We inspected a representative set of 1,611 representative protein-protein complexes and identified pockets with a potential for binding small molecule ligands. The majority of these pockets are within a 6 A distance from protein interfaces. Accordingly, in about half of ligand-bound protein-protein complexes, amino acids from both sides of a protein interface are involved in direct contacts with at least one ligand. Statistically, ligands are closer to a protein-protein interface than a random surface patch of the same solvent accessible surface area. Similar results are obtained in an analysis of the ligand distribution around domain-domain interfaces of 1,416 nonredundant, two-domain protein structures. Furthermore, comparable sized pockets as observed in experimental structures are present in artificially generated protein complexes, suggesting that the prominent appearance of pockets around protein interfaces is mainly a structural consequence of protein packing and thus, is an intrinsic geometric feature of protein structure. Nature may take advantage of such a structural feature by selecting and further optimizing for biological function. We propose that packing nearby protein-protein or domain-domain interfaces is a major route to the formation of ligand-binding pockets.

72 citations

Journal ArticleDOI
TL;DR: To identify antagonists of Bcl-xL function, two ultra-high-throughput screens were implemented and two novel classes of B cl-xl inhibitors were identified by both methods and confirmed to bind (13)C-labeled Bcl -xL using heteronuclear magnetic resonance spectroscopy.

72 citations

Journal ArticleDOI
TL;DR: A group of novel Bcl-xL/Bak antagonists, based on a terephthalamide scaffold, were designed to mimic the alpha-helical region of the Bak peptide and good in vitro inhibition potencies have been observed.

66 citations

Journal ArticleDOI
TL;DR: Fundamentally, the approach seeks to adapt nature's protein recognition principles for the design of suitable secondary structure mimetics for the rational design of PPI inhibitors.

64 citations