scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Influence of fish protein hydrolysate produced from industrial residues on antioxidant activity, cytokine expression and gut microbial communities in juvenile barramundi Lates calcarifer

TL;DR: Results have shown that fermented PBM with TH supplementation could improve the antioxidant capacity and inflammatory responses of juvenile barramundi while influencing the microbial communities at both phylum and genera levels.
About: This article is published in Fish & Shellfish Immunology.The article was published on 2020-02-01. It has received 38 citations till now. The article focuses on the topics: Fish meal & Hydrolysate.
Citations
More filters
Journal ArticleDOI
TL;DR: The source, production processes and functional properties of FPH and the reported impact of F PH in aquafeed supplement on fish growth, survival, feed utilization, immune response and disease resistance, are summarized.
Abstract: In intensive farming systems, fish are held at high densities, which may increase stress, leading to susceptibility to diseases that result in economic losses. Therefore, effective feeding practices incorporating health‐promoting compounds such as proteins, hydrolysates and bioactive peptides that can stimulate the defence mechanisms of fish and achieve better growth are some of the priorities for sustainable aquaculture development. Globally, the fish processing industries generate and discard a large volume of waste every year, estimated at up to 60% of the harvested biomass. This waste can be converted to value‐added products such as fish protein hydrolysate (FPH) with the addition of various proteolytic enzymes. FPH from fish processing waste including skin, heads, muscle, viscera, liver and bones is a good source of protein, amino acids, peptides and antioxidants and has been found to possess desirable functional and bioactive peptides. A moderate inclusion of FPH in aquafeeds has the potential to improve growth, feed utilization, immune functions and disease resistance of fish. Production of FPH, targeted to more precise molecular weight ranges, has superior functionalities that are in high demand. With interest in FPH as an aquafeed supplement, this review aimed to summarize the source, production processes and functional properties of FPH and the reported impact of FPH in aquafeed supplement on fish growth, survival, feed utilization, immune response and disease resistance. Possible limitations of using FPH and future research potential as an opportunity for the use of processing fish waste are also discussed.

72 citations

Journal ArticleDOI
TL;DR: This study signifies that supplementation of 10% with different three FPH, hydrolysed by an alcalase® enzyme in PBM-based diets for barramundi could be good strategies to overcome the negative consequences triggered by animal by-product ingredients.

49 citations

Journal ArticleDOI
12 Nov 2020-PLOS ONE
TL;DR: It can be concluded that a total substitution of FM protein by methionine supplemented PBM negatively influenced the growth performance, liver health, histological traits of different organs, immune and antioxidant response, and expression of stress-related genes in juvenile barramundi.
Abstract: The present study investigates if the total replacement of dietary fishmeal (FM) with poultry by-product meal (PBM), supplemented with methionine influences the muscle fatty acids composition, normal gut morphology, histological traits of the liver, muscle, and gill, liver enzymes, immune and antioxidant response, and stress-related gene in juvenile barramundi, Lates calcarifer in relation to growth and feed utilization. Barramundi (3.58±0.01g) were randomly distributed into six 300 L seawater recirculating tanks (25 fish/tank) and fed two formulated isonitrogenous and isolipidic diets for 6 weeks. The control diet had FM as the sole animal protein source, whereas other test diet had only PBM as an animal protein source. Dietary PBM affected the fish performance and feed utilization. Regarding muscle fatty acid profile, total saturated fatty acids and monounsaturated fatty acids elevated while total PUFA particularly n-3 LC-PUFA and EPA decreased in PBM fed fish than control diet fed fish. Liver, muscle, gill, and intestinal histology showed no obvious alteration in control diet fed fish, however, more lipid droplets and hepatic vacuolization in the liver, necrotic myotome in muscle, hyperplasia in secondary lamellae in gill and short and broken folds in the intestine were observed in PBM fed fish. Similar to light microscopy observation of intestinal morphology, the transmission electron microscopy (TEM) analysis revealed shorter and smaller microvilli in fish fed PBM. Histopathological alterations in the liver of PBM fed fish were further associated with the elevated levels of aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH) and the significant upregulation of stress-related genes, HSP70 and HSP90. Also, a negative influence on lysozyme activity, and antioxidant enzymatic activities were recorded in fish fed PBM. Overall, it can be concluded that a total substitution of FM protein by methionine supplemented PBM negatively influenced the growth performance, liver health, histological traits of different organs, immune and antioxidant response, and expression of stress-related genes in juvenile barramundi.

28 citations


Cites background from "Influence of fish protein hydrolysa..."

  • ...However, elevated serum GPx activity in barramundi fed 90% fermented PBM supplemented with tuna hydrolysate [17] might be due to the antioxidant capacity of fish protein hydrolysate [84]....

    [...]

Journal ArticleDOI
TL;DR: High-throughput sequencing showed that Aeromonas veronii infection can alter the gut microbiota of the Yangtze finless porpoise by affecting the number of harmful bacteria and beneficial bacteria.
Abstract: The gut microbiota is a complex ecosystem, which is essential for the metabolism, health and immunity of host. Many diseases have been shown to be closely related to the alteration of intestinal flora. Aeromonas veronii as a conditioned pathogen can cause disease in Yangtze finless porpoise through intestinal infections. However, it is not clear whether the disease caused by Aeromonas veronii is related to changes of intestinal flora. In the current study, the diversity and composition of gut microbiota in the healthy and Aeromonas veronii-infected Yangtze finless porpoise were evaluated by high-throughput sequencing to further investigate the potential association between intestinal flora alteration and pathogen invasion. A total of 127,3276 high-quality sequences were achieved and 2465 operational taxonomic units (OTUs) were in common among all samples. The results of alpha diversity showed that there was no obvious difference in richness and diversity between healthy and Aeromonas veronii-infected Yangtze finless porpoise. Firmicutes, Bacteroidetes and Proteobacteria were the most dominant phyla in all samples. In addition, the healthy Yangtze finless porpoise exhibited higher abundance of Firmicutes and Fusobacteria than Aeromonas veronii-infected Yangtze finless porpoise, while, the level of Proteobacteria was decreased. At the genus level, Paeniclostridium and Paraclostridium were the predominant bacteria genera in the CK (healthy Yangtze finless porpoise) group. In the DIS (Aeromonas veronii-infected Yangtze finless porpoise) group, Lactobacillus and unidentified_Enterobacteriaceae were the dominant bacteria genera and the proportion of Paeniclostridium, Paraclostridium, Terrisporobacter, Cetobacterium, Candidatus Arthromitus, Terrabacter and Dechloromonas were reduced. In conclusion, our results showed that Aeromonas veronii infection can alter the gut microbiota of the Yangtze finless porpoise by affecting the number of harmful bacteria and beneficial bacteria.

27 citations

Journal ArticleDOI
TL;DR: The effects of feeding different levels of poultry byproduct meal (PBM) replacing fishmeal (FM) protein, supplemented with tuna hydrolysate (TH) and Hermetia illucens (HI) larvae, on the growth, fillet quality, histological traits, immune status, oxidative biomarker levels and gut microbiota of juvenile barramundi, Lates calcarifer were investigated for six weeks as discussed by the authors.
Abstract: The effects of feeding different levels of poultry by-product meal (PBM) replacing fishmeal (FM) protein, supplemented with tuna hydrolysate (TH) and Hermetia illucens (HI) larvae, on the growth, fillet quality, histological traits, immune status, oxidative biomarker levels and gut microbiota of juvenile barramundi, Lates calcarifer were investigated for six weeks. Barramundi were fed four isonitrogenous and isolipidic diets in which a FM based diet was used as the Control diet (Diet1) and compared with other non-FM diets containing 80%, 85% and 90% PBM along with the concurrent supplementation of 5% and/or 10% TH and HI larvae meal. These treatment diets were designated as 80PBM10TH+10HI (Diet2), 85PBM5TH+10HI (Diet3) and 90PBM5TH+5HI (Diet4). The growth and condition factor of fish fed 80PBM10TH+10HI and 85PBM5TH+10HI were significantly higher than the Control. Total saturated, monounsaturated and polyunsaturated fatty acid retention in the fish muscle increased in fish fed PBM-based diets, supplemented with TH and HI larvae meal, with no adverse effect on post-harvest characteristics such as texture and colour of fish fillets. Improvement in serum total bilirubin and total protein content was found in all fish fed TH and HI larvae supplemented PBM. Similarly, immune response showed a significant increase in fish fed non-FM test diets than the Control. In the distal intestine, supplementation of any quantities of TH and HI larvae to PBM led to an increase in the microvilli density and neutral mucins while the number of goblet cells in the skin were unchanged. Liver, kidney, and spleen histology demonstrated a normal structure with no obvious changes in response to all test diets. Bacterial diversity increased in fish fed Diets 2 and 3 with a high abundance of Proteobacteria in Diets 1 and 4 and Firmicutes in Diets 2 and 3. The fish on test diets showed a lower abundance of genus Vibrio. Fish fed TH and HI larvae supplemented PBM diets showed lower infection rate to V. harveyi than the Control. Collectively, concurrent supplementation of TH and HI larvae could improve the quality of PBM diets with positive effects on growth, fillet quality, intestinal health, immunity, and disease resistance.

26 citations

References
More filters
Journal ArticleDOI
TL;DR: The extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.
Abstract: SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.

18,256 citations

Journal ArticleDOI
30 Oct 2006-Oncogene
TL;DR: An overview of the discovery and current status of NF-κB as a research topic is provided and the organization and focus of articles included in the following reviews are described, as well as likely future areas of research interest on NF-σB.
Abstract: This article serves as an introduction to the collection of reviews on nuclear factor-kappaB (NF-kappaB). It provides an overview of the discovery and current status of NF-kappaB as a research topic. Described are the structures, activities and regulation of the proteins in the NF-kappaB family of transcription factors. NF-kappaB signaling is primarily regulated by inhibitor kappaB (IkappaB) proteins and the IkappaB kinase complex through two major pathways: the canonical and non-canonical NF-kappaB pathways. The organization and focus of articles included in the following reviews are described, as well as likely future areas of research interest on NF-kappaB.

2,046 citations

Journal ArticleDOI
TL;DR: The accumulated knowledge gained through extensive in vitro functional analyses and from in vivo animal models supports the concept that clinical therapies based on modulation of this cytokine represent an important new approach to the treatment of disorders of immune function.
Abstract: The transforming growth factor beta (TGF-beta) family of proteins are a set of pleiotropic secreted signaling molecules with unique and potent immunoregulatory properties. TGF-beta 1 is produced by every leukocyte lineage, including lymphocytes, macrophages, and dendritic cells, and its expression serves in both autocrine and paracrine modes to control the differentiation, proliferation, and state of activation of these immune cells. TGF-beta can modulate expression of adhesion molecules, provide a chemotactic gradient for leukocytes and other cells participating in an inflammatory response, and inhibit them once they have become activated. Increased production and activation of latent TGF-beta have been linked to immune defects associated with malignancy and autoimmune disorders, to susceptibility to opportunistic infection, and to the fibrotic complications associated with chronic inflammatory conditions. In addition to these roles in disease pathogenesis, TGF-beta is now established as a principal mediator of oral tolerance and can be recognized as the sine qua non of a unique subset of effector cells that are induced in this process. The accumulated knowledge gained through extensive in vitro functional analyses and from in vivo animal models, including newly established TGF-beta gene knockout and transgenic mice, supports the concept that clinical therapies based on modulation of this cytokine represent an important new approach to the treatment of disorders of immune function.

1,872 citations

Journal ArticleDOI
TL;DR: Gut microbiota membership in domesticated and recently caught zebrafish was strikingly similar, with a shared core gut microbiota, and the zebra fish intestinal habitat selects for specific bacterial taxa despite radical differences in host provenance and domestication status.
Abstract: Experimental analysis of gut microbial communities and their interactions with vertebrate hosts is conducted predominantly in domesticated animals that have been maintained in laboratory facilities for many generations. These animal models are useful for studying coevolved relationships between host and microbiota only if the microbial communities that occur in animals in lab facilities are representative of those that occur in nature. We performed 16S rRNA gene sequence-based comparisons of gut bacterial communities in zebrafish collected recently from their natural habitat and those reared for generations in lab facilities in different geographic locations. Patterns of gut microbiota structure in domesticated zebrafish varied across different lab facilities in correlation with historical connections between those facilities. However, gut microbiota membership in domesticated and recently caught zebrafish was strikingly similar, with a shared core gut microbiota. The zebrafish intestinal habitat therefore selects for specific bacterial taxa despite radical differences in host provenance and domestication status.

883 citations

Journal ArticleDOI
TL;DR: There is accumulating evidence that probiotics are effective at inhibiting a wide range of fish pathogens, but the reasons for the inhibitions are often unstated.
Abstract: Probiotics, which are micro-organisms or their products with health benefit to the host, have found use in aquaculture as a means of disease control, supplementing or even in some cases replacing the use of antimicrobial compounds. A wide range of microalgae (Tetraselmis), yeasts (Debaryomyces, Phaffia and Saccharomyces) and Gram-positive (Bacillus, Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Micrococcus, Streptococcus and Weissella) and Gram-negative bacteria (Aeromonas, Alteromonas, Photorhodobacterium, Pseudomonas and Vibrio) has been evaluated. However, the mode of action of the probiotics is rarely investigated, but possibilities include competitive exclusion, i.e. the probiotics actively inhibit the colonization of potential pathogens in the digestive tract by antibiosis or by competition for nutrients and/or space, alteration of microbial metabolism, and/or by the stimulation of host immunity. Probiotics may stimulate appetite and improve nutrition by the production of vitamins, detoxification of compounds in the diet, and by the breakdown of indigestible components. There is accumulating evidence that probiotics are effective at inhibiting a wide range of fish pathogens, but the reasons for the inhibitions are often unstated.

819 citations

Related Papers (5)