scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Influence of spring and autumn phenological transitions on forest ecosystem productivity

TL;DR: Investigation of relationships between phenology and productivity in temperate and boreal forests finds the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests, which has implications for how climate change may drive shifts in competition within mixed-species stands.
Abstract: We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an 'extra' day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discuss the environmental drivers of phenology, and the impacts of climate change on phenology in different biomes, and assess the potential impact on these feedbacks of shifts in phenology driven by climate change.

1,522 citations


Cites background from "Influence of spring and autumn phen..."

  • ...While some of the extra photosynthesis resulting from a longer growing season tends to be offset by concurrent increases in ecosystem respiration, this effect tends to be smaller than the increase in GEP, which explains why net C uptake is generally greater at sites with a longer, rather than shorter growing season (Richardson et al., 2010)....

    [...]

01 Jan 2009
TL;DR: In this paper, the authors assess 10 start-of-spring (SOS) methods for North America between 1982 and 2006 and find that SOS estimates were more related to the first leaf and first flowers expanding phenological stages.
Abstract: Shifts in the timing of spring phenology are a central feature of global change research. Long-term observations of plant phenology have been used to track vegetation responses to climate variability but are often limited to particular species and locations and may not represent synoptic patterns. Satellite remote sensing is instead used for continental to global monitoring. Although numerous methods exist to extract phenological timing, in particular start-of-spring (SOS), from time series of reflectance data, a comprehensive intercomparison and interpretation of SOS methods has not been conducted. Here, we assess 10 SOS methods for North America between 1982 and 2006. The techniques include consistent inputs from the 8km Global Inventory Modeling and Mapping Studies Advanced Very High Resolution Radiometer NDVIg dataset, independent data for snow cover, soil thaw, lake ice dynamics, spring streamflow timing, over 16000 individual measurements of ground-based phenology, and two temperature-driven models of spring phenology. Compared with an ensemble of the 10 SOS methods, we found that individual methods differed in average day-of-year estimates by ! 60 days and in standard deviation by ! 20 days. The ability of the satellite methods to retrieve SOS estimates was highest in northern latitudes and lowest in arid, tropical, and Mediterranean ecoregions. The ordinal rank of SOS methods varied geographically, as did the relationships between SOS estimates and the cryospheric/hydrologic metrics. Compared with ground observations, SOS estimates were more related to the first leaf and first flowers expanding phenological stages. We found no evidence for time trends in spring arrival from ground- or model-based data; using an ensemble estimate from two methods that were more closely related to ground observations than other methods, SOS

828 citations

Journal ArticleDOI
01 Jan 2020
TL;DR: In this article, the authors examined the detection of the greening signal, its causes and its consequences, and showed that greening is pronounced over intensively farmed or afforested areas, such as in China and India, reflecting human activities.
Abstract: Vegetation greenness has been increasing globally since at least 1981, when satellite technology enabled large-scale vegetation monitoring. The greening phenomenon, together with warming, sea-level rise and sea-ice decline, represents highly credible evidence of anthropogenic climate change. In this Review, we examine the detection of the greening signal, its causes and its consequences. Greening is pronounced over intensively farmed or afforested areas, such as in China and India, reflecting human activities. However, strong greening also occurs in biomes with low human footprint, such as the Arctic, where global change drivers play a dominant role. Vegetation models suggest that CO2 fertilization is the main driver of greening on the global scale, with other factors being notable at the regional scale. Modelling indicates that greening could mitigate global warming by increasing the carbon sink on land and altering biogeophysical processes, mainly evaporative cooling. Coupling high temporal and fine spatial resolution remote-sensing observations with ground measurements, increasing sampling in the tropics and Arctic, and modelling Earth systems in more detail will further our insights into the greening of Earth. Vegetation on Earth is increasing, potentially leading to a larger terrestrial carbon sink. In this Review, we discuss the occurrence of this global greening phenomenon, its drivers and how it might impact carbon cycling and land-atmosphere heat and water fluxes.

722 citations

Journal ArticleDOI
TL;DR: Carbon-nitrogen interactions significantly influence the simulated response of carbon cycle to temperature and atmospheric CO2 concentration, suggesting that nutrients limitations should be included in the next generation of terrestrial biosphere models.
Abstract: The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net primary productivity (NPP) apparent sensitivity to climate variability and atmospheric CO2 trends is diagnosed from each model output, using statistical functions. The temperature sensitivity is compared against ecosystem field warming experiments results. The CO2 sensitivity of NPP is compared to the results from four Free-Air CO2 Enrichment (FACE) experiments. The simulated global net biome productivity (NBP) is compared with the residual land sink (RLS) of the global carbon budget from Friedlingstein et al. [Nature Geoscience 3 (2010) 811] (FR10). We found that models produce a higher GPP (133 � 15 Pg C yr � 1 ) than JU11 (118 � 6P g Cy r � 1 ). In response to rising atmospheric CO2 concentration, modeled

619 citations


Cites background from "Influence of spring and autumn phen..."

  • ...This implies that rising MAT causes an extension of the growing season, and induces an increase in GPP (Piao et al., 2007; Richardson et al., 2010) during warm years....

    [...]

  • ...This implies that rising MAT causes an extension of the growing season, and induces an increase in GPP (Piao et al., 2007; Richardson et al., 2010) during warm years....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors combined datasets of satellite-derived Normalized Difference Vegetation Index (NDVI) and climatic factors to analyze spatio-temporal patterns of changes in vegetation growth and their linkage with changes in temperature and precipitation in temperate and boreal regions of Eurasia.
Abstract: Monitoring changes in vegetation growth has been the subject of considerable research during the past several decades, because of the important role of vegetation in regulating the terrestrial carbon cycle and the climate system. In this study, we combined datasets of satellite-derived Normalized Difference Vegetation Index (NDVI) and climatic factors to analyze spatio-temporal patterns of changes in vegetation growth and their linkage with changes in temperature and precipitation in temperate and boreal regions of Eurasia (> 23.5°N) from 1982 to 2006. At the continental scale, although a statistically significant positive trend of average growing season NDVI is observed (0.5 × 10−3 year−1, P = 0.03) during the entire study period, there are two distinct periods with opposite trends in growing season NDVI. Growing season NDVI has first significantly increased from 1982 to 1997 (1.8 × 10−3 year−1, P < 0.001), and then decreased from 1997 to 2006 (−1.3 × 10−3 year−1, P = 0.055). This reversal in the growing season NDVI trends over Eurasia are largely contributed by spring and summer NDVI changes. Both spring and summer NDVI significantly increased from 1982 to 1997 (2.1 × 10−3 year−1, P = 0.01; 1.6 × 10−3 year−1P < 0.001, respectively), but then decreased from 1997 to 2006, particularly summer NDVI which may be related to the remarkable decrease in summer precipitation (−2.7 mm yr−1, P = 0.009). Further spatial analyses supports the idea that the vegetation greening trend in spring and summer that occurred during the earlier study period 1982–1997 was either stalled or reversed during the following study period 1997–2006. But the turning point of vegetation NDVI is found to vary across different regions.

600 citations


Cites background from "Influence of spring and autumn phen..."

  • ...Increased vegetation productivity in response to warmer spring and autumn, for example, is expected to result from the fact that rising spring and autumn temperature increases growing season length and thus more days are available for carbon assimilation and biomass growth (Piao et al., 2008; Richardson et al., 2010)....

    [...]

  • ...…productivity in response to warmer spring and autumn, for example, is expected to result from the fact that rising spring and autumn temperature increases growing season length and thus more days are available for carbon assimilation and biomass growth (Piao et al., 2008; Richardson et al., 2010)....

    [...]

  • ...Previous studies have suggested that reduced spring temperature is generally associated with delayed vegetation green-up and thus decreased vegetation growth in boreal regions (Piao et al., 2008; Richardson et al., 2010)....

    [...]

References
More filters
Journal ArticleDOI
17 Apr 1997-Nature
TL;DR: In this paper, the authors present evidence from satellite data that the photosynthetic activity of terrestrial vegetation increased from 1981 to 1991 in a manner that is suggestive of an increase in plant growth associated with a lengthening of the active growing season.
Abstract: Variations in the amplitude and timing of the seasonal cycle of atmospheric CO2 have shown an association with surface air temperature consistent with the hypothesis that warmer temperatures have promoted increases in plant growth during summer1 and/or plant respiration during winter2 in the northern high latitudes. Here we present evidence from satellite data that the photosynthetic activity of terrestrial vegetation increased from 1981 to 1991 in a manner that is suggestive of an increase in plant growth associated with a lengthening of the active growing season. The regions exhibiting the greatest increase lie between 45°N and 70°N, where marked warming has occurred in the spring time3 due to an early disappearance of snow4. The satellite data are concordant with an increase in the amplitude of the seasonal cycle of atmospheric carbon dioxide exceeding 20% since the early 1970s, and an advance of up to seven days in the timing of the drawdown of CO2 in spring and early summer1. Thus, both the satellite data and the CO2 record indicate that the global carbon cycle has responded to interannual fluctuations in surface air temperature which, although small at the global scale, are regionally highly significant.

3,368 citations


"Influence of spring and autumn phen..." refers background in this paper

  • ...as inferred from remote sensing or atmospheric CO2 concentrations (Myneni et al. 1997; Randerson et al. 1999)....

    [...]

Journal ArticleDOI
TL;DR: The FLUXNET project as mentioned in this paper is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere.
Abstract: FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S. FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite. Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO 2 exchange of temperate broadleaved forests increases by about 5.7 g C m −2 day −1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO 2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO 2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO 2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.

3,162 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyse the effect of extrapolation of night-time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long-term data sets.
Abstract: This paper discusses the advantages and disadvantages of the different methods that separate net ecosystem exchange (NEE) into its major components, gross ecosystem carbon uptake (GEP) and ecosystem respiration (Reco). In particular, we analyse the effect of the extrapolation of night-time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long-term data sets. For this analysis, we used 16 one-year-long data sets of carbon dioxide exchange measurements from European and US-American eddy covariance networks. These sites span from the boreal to Mediterranean climates, and include deciduous and evergreen forest, scrubland and crop ecosystems. We show that the temperature sensitivity of Reco, derived from long-term (annual) data sets, does not reflect the short-term temperature sensitivity that is effective when extrapolating from night- to daytime. Specifically, in summer active ecosystems the long

2,881 citations

Journal ArticleDOI
TL;DR: Recent advances in several fields that have enabled scaling between species responses to recent climatic changes and shifts in ecosystem productivity are discussed, with implications for global carbon cycling.
Abstract: Plants are finely tuned to the seasonality of their environment, and shifts in the timing of plant activity (i.e. phenology) provide some of the most compelling evidence that species and ecosystems are being influenced by global environmental change. Researchers across disciplines have observed shifting phenology at multiple scales, including earlier spring flowering in individual plants and an earlier spring green-up' of the land surface revealed in satellite images. Experimental and modeling approaches have sought to identify the mechanisms causing these shifts, as well as to make predictions regarding the consequences. Here, we discuss recent advances in several fields that have enabled scaling between species responses to recent climatic changes and shifts in ecosystem productivity, with implications for global carbon cycling.

1,863 citations


"Influence of spring and autumn phen..." refers background in this paper

  • ...INTRODUCTION Numerous studies have documented the effects of recent climate change on the phenology of plant and animal species across a wide range of taxa (Peñuelas et al. 2002; Badeck et al. 2004; Schwartz et al. 2006; Cleland et al. 2007; Parmesan 2007)....

    [...]

Related Papers (5)