scispace - formally typeset

Proceedings ArticleDOI

Influence-Time-Proximity Driven Locations Recommendation Model: An Integrated Approach

01 Oct 2019-pp 1381-1386

TL;DR: This paper proposes an integrated location recommendation model that considers users' interests, their friends influences, time and seasonality factors, and users' willingness to visit distant locations to generate a ranked list of locations which will be recommended to the user.

AbstractLocation Based Social Networks (LBSNs) like Twitter, Foursquare or Instagram are a very good source of extracting human generated data in the form of check-ins, location and social relationships among users. Location data bridges the gap between the physical and digital worlds and enables a deeper understanding of users preference and behaviour. There are many underlying patterns in this type of dataset of human mobility which are utilised for applications like recommender systems. The current approaches involve extracting data from user-item rating, GPS trajectories, or other forms of data, whereas we focus on an integrated model considering factors like user's interest, social influence, time and proximity. There is metadata associated with this dataset which tells us about the whereabouts of the user, with emphasis on types of places. This paper proposes an integrated location recommendation model that considers users' interests, their friends influences, time and seasonality factors, and users' willingness to visit distant locations. We integrate all these parameters to generate a ranked list of locations which will be recommended to the user. Experiments are performed on a real-world dataset which show that our proposed model is effective in the stated conditions.

...read more


References
More filters
Proceedings ArticleDOI
02 Nov 2010
TL;DR: A friend-based collaborative filtering approach for location recommendation based on collaborative ratings of places made by social friends is developed, and a variant of FCF technique, namely Geo-Measured FCF (GM-FCF), based on heuristics derived from observed geospatial characteristics in the Foursquare dataset is proposed.
Abstract: In this paper, we study the research issues in realizing location recommendation services for large-scale location-based social networks, by exploiting the social and geographical characteristics of users and locations/places. Through our analysis on a dataset collected from Foursquare, a popular location-based social networking system, we observe that there exists strong social and geospatial ties among users and their favorite locations/places in the system. Accordingly, we develop a friend-based collaborative filtering (FCF) approach for location recommendation based on collaborative ratings of places made by social friends. Moreover, we propose a variant of FCF technique, namely Geo-Measured FCF (GM-FCF), based on heuristics derived from observed geospatial characteristics in the Foursquare dataset. Finally, the evaluation results show that the proposed family of FCF techniques holds comparable recommendation effectiveness against the state-of-the-art recommendation algorithms, while incurring significantly lower computational overhead. Meanwhile, the GM-FCF provides additional flexibility in tradeoff between recommendation effectiveness and computational overhead.

460 citations

Journal ArticleDOI
TL;DR: A panorama of the recommender systems in location-based social networks with a balanced depth is presented, facilitating research into this important research theme.
Abstract: Recent advances in localization techniques have fundamentally enhanced social networking services, allowing users to share their locations and location-related contents, such as geo-tagged photos and notes. We refer to these social networks as location-based social networks (LBSNs). Location data bridges the gap between the physical and digital worlds and enables a deeper understanding of users' preferences and behavior. This addition of vast geo-spatial datasets has stimulated research into novel recommender systems that seek to facilitate users' travels and social interactions. In this paper, we offer a systematic review of this research, summarizing the contributions of individual efforts and exploring their relations. We discuss the new properties and challenges that location brings to recommender systems for LBSNs. We present a comprehensive survey analyzing 1) the data source used, 2) the methodology employed to generate a recommendation, and 3) the objective of the recommendation. We propose three taxonomies that partition the recommender systems according to the properties listed above. First, we categorize the recommender systems by the objective of the recommendation, which can include locations, users, activities, or social media. Second, we categorize the recommender systems by the methodologies employed, including content-based, link analysis-based, and collaborative filtering-based methodologies. Third, we categorize the systems by the data sources used, including user profiles, user online histories, and user location histories. For each category, we summarize the goals and contributions of each system and highlight the representative research effort. Further, we provide comparative analysis of the recommender systems within each category. Finally, we discuss the available data-sets and the popular methods used to evaluate the performance of recommender systems. Finally, we point out promising research topics for future work. This article presents a panorama of the recommender systems in location-based social networks with a balanced depth, facilitating research into this important research theme.

459 citations


Additional excerpts

  • ...These are, location-location correlation, user-location correlation, and user-user correlation [13]....

    [...]

Journal ArticleDOI
01 Jan 2015
TL;DR: A STAP model is proposed that first models the spatial and temporal activity preference separately, and then uses a principle way to combine them for preference inference, and a context-aware fusion framework is put forward to combine the temporal and spatial activity preference models for preferences inference.
Abstract: With the recent surge of location based social networks (LBSNs), activity data of millions of users has become attainable. This data contains not only spatial and temporal stamps of user activity, but also its semantic information. LBSNs can help to understand mobile users’ spatial temporal activity preference (STAP), which can enable a wide range of ubiquitous applications, such as personalized context-aware location recommendation and group-oriented advertisement. However, modeling such user-specific STAP needs to tackle high-dimensional data, i.e., user-location-time-activity quadruples, which is complicated and usually suffers from a data sparsity problem. In order to address this problem, we propose a STAP model. It first models the spatial and temporal activity preference separately, and then uses a principle way to combine them for preference inference. In order to characterize the impact of spatial features on user activity preference, we propose the notion of personal functional region and related parameters to model and infer user spatial activity preference. In order to model the user temporal activity preference with sparse user activity data in LBSNs, we propose to exploit the temporal activity similarity among different users and apply nonnegative tensor factorization to collaboratively infer temporal activity preference. Finally, we put forward a context-aware fusion framework to combine the spatial and temporal activity preference models for preference inference. We evaluate our proposed approach on three real-world datasets collected from New York and Tokyo, and show that our STAP model consistently outperforms the baseline approaches in various settings.

358 citations


"Influence-Time-Proximity Driven Loc..." refers background in this paper

  • ...One of the main characteristic is physical Points of Interest (POIs) [7] which shows the users’ presence...

    [...]

Proceedings ArticleDOI
05 Nov 2013
TL;DR: This paper proposes algorithms that create recommendations based on four factors: a) past user behavior (visited places), b) the location of each venue, c) the social relationships among the users, and d) the similarity between users.
Abstract: This paper studies the problem of recommending new venues to users who participate in location-based social networks (LBSNs). As an increasingly larger number of users partake in LBSNs, the recommendation problem in this setting has attracted significant attention in research and in practical applications. The detailed information about past user behavior that is traced by the LBSN differentiates the problem significantly from its traditional settings. The spatial nature in the past user behavior and also the information about the user social interaction with other users, provide a richer background to build a more accurate and expressive recommendation model. Although there have been extensive studies on recommender systems working with user-item ratings, GPS trajectories, and other types of data, there are very few approaches that exploit the unique properties of the LBSN user check-in data. In this paper, we propose algorithms that create recommendations based on four factors: a) past user behavior (visited places), b) the location of each venue, c) the social relationships among the users, and d) the similarity between users. The proposed algorithms outperform traditional recommendation algorithms and other approaches that try to exploit LBSN information. To design our recommendation algorithms we study the properties of two real LBSNs, Brightkite and Gowalla, and analyze the relation between users and visited locations. An experimental evaluation using data from these LBSNs shows that the exploitation of the additional geographical and social information allows our proposed techniques to outperform the current state of the art.

228 citations

Proceedings ArticleDOI
29 Aug 2009
TL;DR: This study is the first large-scale quantitative analysis of a real-world commercial LSN service and presents results of data analysis over user profiles, update activities, mobility characteristics, social graphs, and attribute correlations.
Abstract: Location-based Social Networks (LSNs) allow users to see where their friends are, to search location-tagged contentwithin their social graph, and to meet others nearby. The recent availability of open mobile platforms, such as Apple iPhones and Google Android phones, makes LSNs much more accessible to mobile users.To study how users share their location in real world, wecollected traces from a commercial LSN service operated by astartup company. In this paper, we present results of data analysis over user profiles, update activities, mobility characteristics, social graphs, and attribute correlations. To the best of our knowledge, this study is the first large-scale quantitative analysis of a real-world commercial LSN service.

156 citations


"Influence-Time-Proximity Driven Loc..." refers background in this paper

  • ...Some correlated data analysis can also be done between several user attributes and mobility-related metrics to analyse factors impacting user mobility [11]....

    [...]