scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Information cascades in complex networks

01 Oct 2017-Journal of Complex Networks (Oxford Academic)-Vol. 5, Iss: 5, pp 665-693
TL;DR: Simulation results on sample networks reveal just how relevant the centrality of initiator nodes is on the latter development of an information cascade, and the spreading influence of a node is defined as the fraction of nodes that is activated as a result of the initial activation of that node.
Abstract: Information cascades are important dynamical processes in complex networks. An information cascade can describe the spreading dynamics of rumour, disease, memes, or marketing campaigns, which initially start from a node or a set of nodes in the network. If conditions are right, information cascades rapidly encompass large parts of the network, thus leading to epidemics or epidemic spreading. Certain network topologies are particularly conducive to epidemics, while others decelerate and even prohibit rapid information spreading. Here we review models that describe information cascades in complex networks, with an emphasis on the role and consequences of node centrality. In particular, we present simulation results on sample networks that reveal just how relevant the centrality of initiator nodes is on the latter development of an information cascade, and we define the spreading influence of a node as the fraction of nodes that is activated as a result of the initial activation of that node. A systemic review of existing results shows that some centrality measures, such as the degree and betweenness, are positively correlated with the spreading influence, while other centrality measures, such as eccentricity and the information index, have negative correlation. A positive correlation implies that choosing a node with the highest centrality value will activate the largest number of nodes, while a negative correlation implies that the node with the lowest centrality value will have the same effect.We discuss possible applications of these results, and we emphasize how information cascades can help us identify nodes with the highest spreading capability in complex networks.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a comparative analysis of more than 100 million pieces of content concerning several controversial topics (e.g., gun control, vaccination, abortion) from Gab, Facebook, Reddit, and Twitter was performed.
Abstract: Social media may limit the exposure to diverse perspectives and favor the formation of groups of like-minded users framing and reinforcing a shared narrative, that is, echo chambers. However, the interaction paradigms among users and feed algorithms greatly vary across social media platforms. This paper explores the key differences between the main social media platforms and how they are likely to influence information spreading and echo chambers’ formation. We perform a comparative analysis of more than 100 million pieces of content concerning several controversial topics (e.g., gun control, vaccination, abortion) from Gab, Facebook, Reddit, and Twitter. We quantify echo chambers over social media by two main ingredients: 1) homophily in the interaction networks and 2) bias in the information diffusion toward like-minded peers. Our results show that the aggregation of users in homophilic clusters dominate online interactions on Facebook and Twitter. We conclude the paper by directly comparing news consumption on Facebook and Reddit, finding higher segregation on Facebook.

358 citations

Journal ArticleDOI
TL;DR: This work presents research highlights ranging from determination of the molecular interaction network within a cell to studies of architectural and functional properties of brain networks and biological transportation networks, and focuses on synergies between network science and data analysis, which enable us to determine functional connectivity patterns in multicellular systems.

306 citations

Journal ArticleDOI
TL;DR: This work analyzes the propagation of two representative diseases in the real-world population and their corresponding information on Internet, suggesting the high correlation of the two-type dynamical processes.

153 citations

Journal Article
TL;DR: This work develops a framework for understanding the robustness of interacting networks subject to cascading failures and presents exact analytical solutions for the critical fraction of nodes that, on removal, will lead to a failure cascade and to a complete fragmentation of two interdependent networks.
Abstract: Complex networks have been studied intensively for a decade, but research still focuses on the limited case of a single, non-interacting network. Modern systems are coupled together and therefore should be modelled as interdependent networks. A fundamental property of interdependent networks is that failure of nodes in one network may lead to failure of dependent nodes in other networks. This may happen recursively and can lead to a cascade of failures. In fact, a failure of a very small fraction of nodes in one network may lead to the complete fragmentation of a system of several interdependent networks. A dramatic real-world example of a cascade of failures (‘concurrent malfunction’) is the electrical blackout that affected much of Italy on 28 September 2003: the shutdown of power stations directly led to the failure of nodes in the Internet communication network, which in turn caused further breakdown of power stations. Here we develop a framework for understanding the robustness of interacting networks subject to such cascading failures. We present exact analytical solutions for the critical fraction of nodes that, on removal, will lead to a failure cascade and to a complete fragmentation of two interdependent networks. Surprisingly, a broader degree distribution increases the vulnerability of interdependent networks to random failure, which is opposite to how a single network behaves. Our findings highlight the need to consider interdependent network properties in designing robust networks.

132 citations

References
More filters
Journal ArticleDOI
04 Jun 1998-Nature
TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Abstract: Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

39,297 citations


"Information cascades in complex net..." refers background or methods in this paper

  • ...Networks, extracted from real-world data [6], have been shown to share a number of common structural properties such as a scale-free degree distribution, small-worldness [7], community structure [8] densification and shrinking diameter [9]....

    [...]

  • ...Small-world networks are constructed by the algorithm proposed by Watts and Strogatz in their seminal work [7]....

    [...]

Journal ArticleDOI
15 Oct 1999-Science
TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Abstract: Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

33,771 citations


"Information cascades in complex net..." refers background or methods in this paper

  • ...Degree is an important centrality measure, and many dynamical processes have been linked to node degree [20, 115]....

    [...]

  • ...Barabasi-Albert model [115] results in such networks....

    [...]

  • ...The coreness can be efficiently computed for large-scale networks; however, it cannot be applied to many model networks such as tree and scale-free networks constructed using Barabasi-Albert algorithm [115], for which the coreness of all nodes have close values such that one cannot distinguish them....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Abstract: The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdohs and Alfred Renyi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in the system. This process obeys preferential attachment: the new nodes are more likely to connect to nodes with already high degree. We have proposed a simple model based on these two principles wich was able to reproduce the power-law degree distribution of real networks. Perhaps even more importantly, this model paved the way to a new paradigm of network modeling, trying to capture the evolution of networks, not just their static topology.

18,415 citations

Journal ArticleDOI
TL;DR: In this article, three distinct intuitive notions of centrality are uncovered and existing measures are refined to embody these conceptions, and the implications of these measures for the experimental study of small groups are examined.

14,757 citations


"Information cascades in complex net..." refers background in this paper

  • ...Betweenness centrality, as introduced by Freeman [119, 120], takes into account centrality of nodes in navigation through the network....

    [...]

  • ...Indeed, the concept of centrality was first introduced by Freeman to distinguish the nodes by their structural centrality....

    [...]

Journal ArticleDOI
TL;DR: This article proposes a method for detecting communities, built around the idea of using centrality indices to find community boundaries, and tests it on computer-generated and real-world graphs whose community structure is already known and finds that the method detects this known structure with high sensitivity and reliability.
Abstract: A number of recent studies have focused on the statistical properties of networked systems such as social networks and the Worldwide Web. Researchers have concentrated particularly on a few properties that seem to be common to many networks: the small-world property, power-law degree distributions, and network transitivity. In this article, we highlight another property that is found in many networks, the property of community structure, in which network nodes are joined together in tightly knit groups, between which there are only looser connections. We propose a method for detecting such communities, built around the idea of using centrality indices to find community boundaries. We test our method on computer-generated and real-world graphs whose community structure is already known and find that the method detects this known structure with high sensitivity and reliability. We also apply the method to two networks whose community structure is not well known—a collaboration network and a food web—and find that it detects significant and informative community divisions in both cases.

14,429 citations


"Information cascades in complex net..." refers background in this paper

  • ...Networks, extracted from real-world data [6], have been shown to share a number of common structural properties such as a scale-free degree distribution, small-worldness [7], community structure [8] densification and shrinking diameter [9]....

    [...]