scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Information-Theoretically Optimal Compressed Sensing via Spatial Coupling and Approximate Message Passing

01 Nov 2013-IEEE Transactions on Information Theory (IEEE)-Vol. 59, Iss: 11, pp 7434-7464
TL;DR: An approximate message passing (AMP) algorithm is used and a rigorous proof is given that this approach is successful as soon as the undersampling rate δ exceeds the (upper) Rényi information dimension of the signal, d̅(pX).
Abstract: We study the compressed sensing reconstruction problem for a broad class of random, band-diagonal sensing matrices. This construction is inspired by the idea of spatial coupling in coding theory. As demonstrated heuristically and numerically by Krzakala [30], message passing algorithms can effectively solve the reconstruction problem for spatially coupled measurements with undersampling rates close to the fraction of nonzero coordinates. We use an approximate message passing (AMP) algorithm and analyze it through the state evolution method. We give a rigorous proof that this approach is successful as soon as the undersampling rate δ exceeds the (upper) Renyi information dimension of the signal, d(pX). More precisely, for a sequence of signals of diverging dimension n whose empirical distribution converges to pX, reconstruction is with high probability successful from d(pX) n+o(n) measurements taken according to a band diagonal matrix. For sparse signals, i.e., sequences of dimension n and k(n) nonzero entries, this implies reconstruction from k(n)+o(n) measurements. For “discrete” signals, i.e., signals whose coordinates take a fixed finite set of values, this implies reconstruction from o(n) measurements. The result is robust with respect to noise, does not apply uniquely to random signals, but requires the knowledge of the empirical distribution of the signal pX.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a denoising-based approximate message passing (D-AMP) framework is proposed to integrate a wide class of denoisers within its iterations. But, the performance of D-AMP is limited by the use of an appropriate Onsager correction term in its iterations, which coerces the signal perturbation at each iteration to be very close to the white Gaussian noise that denoisers are typically designed to remove.
Abstract: A denoising algorithm seeks to remove noise, errors, or perturbations from a signal. Extensive research has been devoted to this arena over the last several decades, and as a result, todays denoisers can effectively remove large amounts of additive white Gaussian noise. A compressed sensing (CS) reconstruction algorithm seeks to recover a structured signal acquired using a small number of randomized measurements. Typical CS reconstruction algorithms can be cast as iteratively estimating a signal from a perturbed observation. This paper answers a natural question: How can one effectively employ a generic denoiser in a CS reconstruction algorithm? In response, we develop an extension of the approximate message passing (AMP) framework, called denoising-based AMP (D-AMP), that can integrate a wide class of denoisers within its iterations. We demonstrate that, when used with a high-performance denoiser for natural images, D-AMP offers the state-of-the-art CS recovery performance while operating tens of times faster than competing methods. We explain the exceptional performance of D-AMP by analyzing some of its theoretical features. A key element in D-AMP is the use of an appropriate Onsager correction term in its iterations, which coerces the signal perturbation at each iteration to be very close to the white Gaussian noise that denoisers are typically designed to remove.

535 citations

Posted Content
TL;DR: Denoising-based approximate message passing (D-AMP) as mentioned in this paper integrates a wide class of denoisers within its iterations to improve the performance of compressed sensing (CS) reconstruction.
Abstract: A denoising algorithm seeks to remove noise, errors, or perturbations from a signal. Extensive research has been devoted to this arena over the last several decades, and as a result, today's denoisers can effectively remove large amounts of additive white Gaussian noise. A compressed sensing (CS) reconstruction algorithm seeks to recover a structured signal acquired using a small number of randomized measurements. Typical CS reconstruction algorithms can be cast as iteratively estimating a signal from a perturbed observation. This paper answers a natural question: How can one effectively employ a generic denoiser in a CS reconstruction algorithm? In response, we develop an extension of the approximate message passing (AMP) framework, called Denoising-based AMP (D-AMP), that can integrate a wide class of denoisers within its iterations. We demonstrate that, when used with a high performance denoiser for natural images, D-AMP offers state-of-the-art CS recovery performance while operating tens of times faster than competing methods. We explain the exceptional performance of D-AMP by analyzing some of its theoretical features. A key element in D-AMP is the use of an appropriate Onsager correction term in its iterations, which coerces the signal perturbation at each iteration to be very close to the white Gaussian noise that denoisers are typically designed to remove.

337 citations

Proceedings ArticleDOI
01 Jul 2012
TL;DR: The key technical result is a proof that, under belief-propagation decoding, spatially coupled ensembles achieve essentially the area threshold of the underlying uncoupled ensemble.
Abstract: We investigate spatially coupled code ensembles. For transmission over the binary erasure channel, it was recently shown that spatial coupling increases the belief propagation threshold of the ensemble to essentially the maximum a-priori threshold of the underlying component ensemble. This explains why convolutional LDPC ensembles, originally introduced by Felstrom and Zigangirov, perform so well over this channel. We show that the equivalent result holds true for transmission over general binary-input memoryless output-symmetric channels. More precisely, given a desired error probability and a gap to capacity, we can construct a spatially coupled ensemble which fulfills these constraints universally on this class of channels under belief propagation decoding. In fact, most codes in that ensemble have that property. The quantifier universal refers to the single ensemble/code which is good for all channels if we assume that the channel is known at the receiver. The key technical result is a proof that under belief propagation decoding spatially coupled ensembles achieve essentially the area threshold of the underlying uncoupled ensemble. We conclude by discussing some interesting open problems.

321 citations

Journal ArticleDOI
TL;DR: The connection between inference and statistical physics is currently witnessing an impressive renaissance and the current state-of-the-art is reviewed, with a pedagogical focus on the Ising model which, formulated as an inference problem, is called the planted spin glass.
Abstract: Many questions of fundamental interest in today's science can be formulated as inference problems: some partial, or noisy, observations are performed over a set of variables and the goal is to recover, or infer, the values of the variables based on the indirect information contained in the measurements. For such problems, the central scientific questions are: Under what conditions is the information contained in the measurements sufficient for a satisfactory inference to be possible? What are the most efficient algorithms for this task? A growing body of work has shown that often we can understand and locate these fundamental barriers by thinking of them as phase transitions in the sense of statistical physics. Moreover, it turned out that we can use the gained physical insight to develop new promising algorithms. The connection between inference and statistical physics is currently witnessing an impressive renaissance and we review here the current state-of-the-art, with a pedagogical focus on the Ising ...

306 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a pedagogical review of the current state-of-the-art algorithms for the planted spin glass problem, with a focus on the Ising model.
Abstract: Many questions of fundamental interest in todays science can be formulated as inference problems: Some partial, or noisy, observations are performed over a set of variables and the goal is to recover, or infer, the values of the variables based on the indirect information contained in the measurements. For such problems, the central scientific questions are: Under what conditions is the information contained in the measurements sufficient for a satisfactory inference to be possible? What are the most efficient algorithms for this task? A growing body of work has shown that often we can understand and locate these fundamental barriers by thinking of them as phase transitions in the sense of statistical physics. Moreover, it turned out that we can use the gained physical insight to develop new promising algorithms. Connection between inference and statistical physics is currently witnessing an impressive renaissance and we review here the current state-of-the-art, with a pedagogical focus on the Ising model which formulated as an inference problem we call the planted spin glass. In terms of applications we review two classes of problems: (i) inference of clusters on graphs and networks, with community detection as a special case and (ii) estimating a signal from its noisy linear measurements, with compressed sensing as a case of sparse estimation. Our goal is to provide a pedagogical review for researchers in physics and other fields interested in this fascinating topic.

241 citations

References
More filters
Book
D.L. Donoho1
01 Jan 2004
TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Abstract: Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0

18,609 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the model problem of reconstructing an object from incomplete frequency samples and showed that with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the lscr/sub 1/ minimization problem.
Abstract: This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discrete-time signal f/spl isin/C/sup N/ and a randomly chosen set of frequencies /spl Omega/. Is it possible to reconstruct f from the partial knowledge of its Fourier coefficients on the set /spl Omega/? A typical result of this paper is as follows. Suppose that f is a superposition of |T| spikes f(t)=/spl sigma//sub /spl tau//spl isin/T/f(/spl tau/)/spl delta/(t-/spl tau/) obeying |T|/spl les/C/sub M//spl middot/(log N)/sup -1/ /spl middot/ |/spl Omega/| for some constant C/sub M/>0. We do not know the locations of the spikes nor their amplitudes. Then with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the /spl lscr//sub 1/ minimization problem. In short, exact recovery may be obtained by solving a convex optimization problem. We give numerical values for C/sub M/ which depend on the desired probability of success. Our result may be interpreted as a novel kind of nonlinear sampling theorem. In effect, it says that any signal made out of |T| spikes may be recovered by convex programming from almost every set of frequencies of size O(|T|/spl middot/logN). Moreover, this is nearly optimal in the sense that any method succeeding with probability 1-O(N/sup -M/) would in general require a number of frequency samples at least proportional to |T|/spl middot/logN. The methodology extends to a variety of other situations and higher dimensions. For example, we show how one can reconstruct a piecewise constant (one- or two-dimensional) object from incomplete frequency samples - provided that the number of jumps (discontinuities) obeys the condition above - by minimizing other convex functionals such as the total variation of f.

14,587 citations

Journal ArticleDOI
TL;DR: F can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program) and numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant fraction of the output is corrupted.
Abstract: This paper considers a natural error correcting problem with real valued input/output. We wish to recover an input vector f/spl isin/R/sup n/ from corrupted measurements y=Af+e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to recover f exactly from the data y? We prove that under suitable conditions on the coding matrix A, the input f is the unique solution to the /spl lscr//sub 1/-minimization problem (/spl par/x/spl par//sub /spl lscr/1/:=/spl Sigma//sub i/|x/sub i/|) min(g/spl isin/R/sup n/) /spl par/y - Ag/spl par//sub /spl lscr/1/ provided that the support of the vector of errors is not too large, /spl par/e/spl par//sub /spl lscr/0/:=|{i:e/sub i/ /spl ne/ 0}|/spl les//spl rho//spl middot/m for some /spl rho/>0. In short, f can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program). In addition, numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant fraction of the output is corrupted. This work is related to the problem of finding sparse solutions to vastly underdetermined systems of linear equations. There are also significant connections with the problem of recovering signals from highly incomplete measurements. In fact, the results introduced in this paper improve on our earlier work. Finally, underlying the success of /spl lscr//sub 1/ is a crucial property we call the uniform uncertainty principle that we shall describe in detail.

6,853 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the problem of recovering a vector x ∈ R^m from incomplete and contaminated observations y = Ax ∈ e + e, where e is an error term.
Abstract: Suppose we wish to recover a vector x_0 Є R^m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax_0 + e; A is an n by m matrix with far fewer rows than columns (n « m) and e is an error term. Is it possible to recover x_0 accurately based on the data y? To recover x_0, we consider the solution x^# to the l_(1-)regularization problem min ‖x‖l_1 subject to ‖Ax - y‖l(2) ≤ Є, where Є is the size of the error term e. We show that if A obeys a uniform uncertainty principle (with unit-normed columns) and if the vector x_0 is sufficiently sparse, then the solution is within the noise level ‖x^# - x_0‖l_2 ≤ C Є. As a first example, suppose that A is a Gaussian random matrix; then stable recovery occurs for almost all such A's provided that the number of nonzeros of x_0 is of about the same order as the number of observations. As a second instance, suppose one observes few Fourier samples of x_0; then stable recovery occurs for almost any set of n coefficients provided that the number of nonzeros is of the order of n/[log m]^6. In the case where the error term vanishes, the recovery is of course exact, and this work actually provides novel insights into the exact recovery phenomenon discussed in earlier papers. The methodology also explains why one can also very nearly recover approximately sparse signals.

6,727 citations

Journal ArticleDOI
TL;DR: A simple costless modification to iterative thresholding is introduced making the sparsity–undersampling tradeoff of the new algorithms equivalent to that of the corresponding convex optimization procedures, inspired by belief propagation in graphical models.
Abstract: Compressed sensing aims to undersample certain high-dimensional signals yet accurately reconstruct them by exploiting signal characteristics. Accurate reconstruction is possible when the object to be recovered is sufficiently sparse in a known basis. Currently, the best known sparsity–undersampling tradeoff is achieved when reconstructing by convex optimization, which is expensive in important large-scale applications. Fast iterative thresholding algorithms have been intensively studied as alternatives to convex optimization for large-scale problems. Unfortunately known fast algorithms offer substantially worse sparsity–undersampling tradeoffs than convex optimization. We introduce a simple costless modification to iterative thresholding making the sparsity–undersampling tradeoff of the new algorithms equivalent to that of the corresponding convex optimization procedures. The new iterative-thresholding algorithms are inspired by belief propagation in graphical models. Our empirical measurements of the sparsity–undersampling tradeoff for the new algorithms agree with theoretical calculations. We show that a state evolution formalism correctly derives the true sparsity–undersampling tradeoff. There is a surprising agreement between earlier calculations based on random convex polytopes and this apparently very different theoretical formalism.

2,412 citations