scispace - formally typeset
Search or ask a question
Book

Infrared Spectroscopy: Fundamentals and Applications

30 Jul 2004-
TL;DR: In this paper, the authors present a set of techniques for detecting anomalous infrared spectra, including Fourier Transform Infrared Spectrometers (FTIS) and Spectral Spectral Transform Transform (STT) this paper.
Abstract: Series Preface.Preface.Acronyms, Abbreviations and Symbols.About the Author.1. Introduction.1.1 Electromagnetic Radiation.1.2 Infrared Absorptions.1.3 Normal Modes of Vibration.1.4 Complicating Factors.1.4.1 Overtone and Combination Bands.1.4.2 Fermi Resonance.1.4.3 Coupling.1.4.4 Vibration-Rotation Bands.References.2. Experimental Methods.2.1 Introduction.2.2 Dispersive Infrared Spectrometers.2.3 Fourier-Transform Infrared Spectrometers.2.3.1 Michelson Interferometers.2.3.2 Sources and Detectors.2.3.3 Fourier-Transformation.2.3.4 Moving Mirrors.2.3.5 Signal-Averaging.2.3.6 Advantages.2.3.7 Computers.2.3.8 Spectra.2.4 Transmission Methods.2.4.1 Liquids and Solutions.2.4.2 Solids.2.4.3 Gases.2.4.4 Pathlength Calibration.2.5 Reflectance Methods.2.5.1 Attenuated Total Reflectance Spectroscopy.2.5.2 Specular Reflectance Spectroscopy.2.5.3 Diffuse Reflectance Spectroscopy.2.5.4 Photoacoustic Spectroscopy.2.6 Microsampling Methods.2.7 Chromatography-Infrared Spectroscopy.2.8 Thermal Analysis-Infrared Spectroscopy.2.9 Other Techniques.References.3. Spectral Analysis.3.1 Introduction.3.2 Group Frequencies.3.2.1 Mid-Infrared Region.3.2.2 Near-Infrared Region.3.2.3 Far-Infrared Region.3.3 Identification.3.4 Hydrogen Bonding.3.5 Spectrum Manipulation.3.5.1 Baseline Correction.3.5.2 Smoothing.3.5.3 Difference Spectra.3.5.4 Derivatives.3.5.5 Deconvolution.3.5.6 Curve-Fitting.3.6 Concentration.3.7 Simple Quantitative Analysis.3.7.1 Analysis of Liquid Samples.3.7.2 Analysis of Solid Samples.3.8 Multi-Component Analysis.3.9 Calibration Methods.References.4. Organic Molecules.4.1 Introduction.4.2 Aliphatic Hydrocarbons.4.3 Aromatic Compounds.4.4 Oxygen-Containing Compounds.4.4.1 Alcohols and Phenols.4.4.2 Ethers.4.4.3 Aldehydes and Ketones.4.4.4 Esters.4.4.5 Carboxylic Acids and Anhydrides.4.5 Nitrogen-Containing Compounds.4.5.1 Amines.4.5.2 Amides.4.6 Halogen-Containing Compounds.4.7 Heterocyclic Compounds.4.8 Boron Compounds.4.9 Silicon Compounds.4.10 Phosphorus Compounds.4.11 Sulfur Compounds.4.12 Near-Infrared Spectra.4.13 Identification.References.5. Inorganic Molecules.5.1 Introduction.5.2 General Considerations.5.3 Normal Modes of Vibration.5.4 Coordination Compounds.5.5 Isomerism.5.6 Metal Carbonyls.5.7 Organometallic Compounds.5.8 Minerals.References.6. Polymers.6.1 Introduction.6.2 Identification.6.3 Polymerization.6.4 Structure.6.5 Surfaces.6.6 Degradation.References.7. Biological Applications.7.1 Introduction.7.2 Lipids.7.3 Proteins and Peptides.7.4 Nucleic Acids.7.5 Disease Diagnosis.7.6 Microbial Cells.7.7 Plants.7.8 Clinical Chemistry.References.8. Industrial and Environmental Applications.8.1 Introduction.8.2 Pharmaceutical Applications.8.3 Food Science.8.4 Agricultural Applications.8.5 Pulp and Paper Industries.8.6 Paint Industry.8.7 Environmental Applications.References.Responses to Self-Assessment Questions.Bibliography.Glossary of Terms.SI Units and Physical Constants.Periodic Table.Index.
Citations
More filters
Journal ArticleDOI
TL;DR: This manuscript brings together some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis.
Abstract: IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing.

1,340 citations

Journal ArticleDOI
TL;DR: It is demonstrated that biochars are highly heterogeneous materials that, depending on feedstock and HTT, may be suitable for soil application by contributing to the nutrient status and adding recalcitrant C to the soil but also potentially pose ecotoxicological challenges.
Abstract: Biochars are increasingly used as soil amendment and for C sequestration in soils. The influence of feedstock differences and pyrolysis temperature on biochar characteristics has been widely studied. However, there is a lack of knowledge about the formation of potentially toxic compounds that remain in the biochars after pyrolysis. We investigated biochars from three feedstocks (wheat straw, poplar wood, and spruce wood) that were slowly pyrolyzed at 400, 460, and 525°C for 5 h (straw) and 10 h (woodchips), respectively. We characterized the biochars' pH, electrical conductivity, elemental composition (by dry combustion and X-ray fluorescence), surface area (by N adsorption), water-extractable major elements, and cation exchange capacity (CEC). We further conducted differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffractometry to obtain information on the biochars' molecular characteristics and mineralogical composition. We investigated trace metal content, total polycyclic aromatic hydrocarbon (PAH) content, and PAH composition in the biochars. The highest salt (4.92 mS cm) and ash (12.7%) contents were found in straw-derived biochars. The H/C ratios of biochars with highest treatment temperature (HTT) 525°C were 0.46 to 0.40. Surface areas were low but increased (1.8-56 m g) with increasing HTT, whereas CEC decreased (162-52 mmol kg) with increasing HTT. The results of DSC and FTIR suggested a loss of labile, aliphatic compounds during pyrolysis and the formation of more recalcitrant, aromatic constituents. X-ray diffractometry patterns indicated a mineralogical restructuring of biochars with increasing HTT. Water-extractable major and trace elements varied considerably with feedstock composition, with trace elements also affected by HTT. Total PAH contents (sum of EPA 16 PAHs) were highly variable with values up to 33.7 mg kg; irrespective of feedstock type, the composition of PAHs showed increasing dominance of naphthalene with increasing HTT. The results demonstrate that biochars are highly heterogeneous materials that, depending on feedstock and HTT, may be suitable for soil application by contributing to the nutrient status and adding recalcitrant C to the soil but also potentially pose ecotoxicological challenges.

793 citations

Journal ArticleDOI
TL;DR: The FTIR vibrational spectroscopy is presented, without claiming to cover entire field, for the characterization of diamond, amorphous carbon, graphite, graphene, carbon nanotubes, fullerene and carbon quantum dots.
Abstract: Fourier transform Infrared (FTIR) spectroscopy is a versatile technique for the characterization of materials belonging to the carbon family. Based on the interaction of the IR radiation with matter this technique may be used for the identification and characterization of chemical structures. Most important features of this method are: non-destructive, real-time measurement and relatively easy to use. Carbon basis for all living systems has found numerous industrial applications from carbon coatings (i.e. amorphous and nanocrystalline carbon films: diamond-like carbon (DLC) films) to nanostructured materials (fullerenes, nanotubes, graphene) and carbon materials at nanoscale or carbon dots (CDots). In this paper, we present the FTIR vibrational spectroscopy for the characterization of diamond, amorphous carbon, graphite, graphene, carbon nanotubes (CNTs), fullerene and carbon quantum dots (CQDs), without claiming to cover entire field.

660 citations

Journal ArticleDOI
08 Jun 2018-Science
TL;DR: An imaging-based nanophotonic technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices.
Abstract: Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices.

645 citations

Journal ArticleDOI
02 Sep 2016-Science
TL;DR: It is shown that nanoporous polyethylene (nanoPE) is transparent to mid-infrared human body radiation but opaque to visible light because of the pore size distribution, and processed the material to develop a textile that promotes effective radiative cooling while still having sufficient air permeability, water-wicking rate, and mechanical strength for wearability.
Abstract: Thermal management through personal heating and cooling is a strategy by which to expand indoor temperature setpoint range for large energy saving. We show that nanoporous polyethylene (nanoPE) is transparent to mid-infrared human body radiation but opaque to visible light because of the pore size distribution (50 to 1000 nanometers). We processed the material to develop a textile that promotes effective radiative cooling while still having sufficient air permeability, water-wicking rate, and mechanical strength for wearability. We developed a device to simulate skin temperature that shows temperatures 2.7° and 2.0°C lower when covered with nanoPE cloth and with processed nanoPE cloth, respectively, than when covered with cotton. Our processed nanoPE is an effective and scalable textile for personal thermal management.

641 citations

References
More filters
Book
01 Jan 1963
TL;DR: In this paper, a sequence of procedures for identifying an unknown organic liquid using mass, NMR, IR, and UV spectroscopy is presented, along with specific examples of unknowns and their spectra.
Abstract: Presents a sequence of procedures for identifying an unknown organic liquid using mass, NMR, IR, and UV spectroscopy, along with specific examples of unknowns and their spectra,

11,753 citations

Book
22 Oct 1991
TL;DR: The -NH2, -NHR, and -NR2 groups as discussed by the authors are the most commonly used groups for double bonds containing Nitrogen Atoms, and the -C=N and -N=C groups.
Abstract: Alkanes. Halocompounds. Alcohols and Phenols. Ethers and Peroxides. Alkenes. Acetylenes. The -C=N and -N=C Groups. Compounds Containing the Carbonyl Group. Compounds Containing -NH2, -NHR, and -NR2 Groups. The Nitro Group. Double Bonds Containing Nitrogen Atoms. Cumulated Double Bonds. Organic Sulfur Compounds. Organosilicon Compounds. Organophosphorous Compounds. Aromatic and Heteroaromatic Rings. Selected Infrared and Raman Spectra. Appendices. Index.

3,927 citations


"Infrared Spectroscopy: Fundamentals..." refers background in this paper

  • ...The programs work by hunting through stored data to match intensities and wavenumbers of absorption bands [3]....

    [...]

  • ...It is possible to combine an infrared spectrometer with a microscope facility in order to study very small samples [3–6]....

    [...]

  • ...For further reference, there is a range of books and book chapters available which provide an overview of the theory behind infrared spectroscopy [3–7]....

    [...]

Reference EntryDOI
15 Sep 2006
TL;DR: In this paper, the authors present a first-pass interpretation of the infrared spectrum of a molecule, based on structural features of the molecule, whether they are the backbone of the molecules or the functional groups attached to the molecule.
Abstract: The vibrational spectrum of a molecule is considered to be a unique physical property and is characteristic of the molecule. As such, the infrared spectrum can be used as a fingerprint for identification by the comparison of the spectrum from an “unknown” with previously recorded reference spectra. This is the basis of computer-based spectral searching. In the absence of a suitable reference database, it is possible to effect a basic interpretation of the spectrum from first principles, leading to characterization, and possibly even identification of an unknown sample. This first principles approach is based on the fact that structural features of the molecule, whether they are the backbone of the molecule or the functional groups attached to the molecule, produce characteristic and reproducible absorptions in the spectrum. This information can indicate whether there is backbone to the structure and, if so, whether the backbone consists of linear or branched chains. Next it is possible to determine if there is unsaturation and/or aromatic rings in the structure. Finally, it is possible to deduce whether specific functional groups are present. If detected, one is also able to determine local orientation of the group and its local environment and/or location in the structure. The origins of the sample, its prehistory, and the manner in which the sample is handled all have impact on the final result. Basic rules of interpretation exist and, if followed, a simple, first-pass interpretation leading to material characterization is possible. This article addresses these issues in a simple, logical fashion. Practical examples are included to help guide the reader through the basic concepts of infrared spectral interpretation.

3,824 citations


"Infrared Spectroscopy: Fundamentals..." refers background or methods in this paper

  • ...The determination of the concentration of a gas needs to be considered separately from solids and liquids [5]....

    [...]

  • ...The application of statistical methods to the analysis of experimental data is known as chemometrics [5–9]....

    [...]

  • ...For further reference, there is a range of books and book chapters available which provide an overview of the theory behind infrared spectroscopy [3–7]....

    [...]

  • ...It is possible to combine an infrared spectrometer with a microscope facility in order to study very small samples [3–6]....

    [...]

Book
01 Jan 1974
TL;DR: The use of vibrational spectroscopy as a tool in identifying mineral species and in deriving information concerning the structure, composition and reactions of minerals and mineral products is discussed in this paper.
Abstract: The principal concern of this book is the use of vibrational spectroscopy as a tool in identifying mineral species and in deriving information concerning the structure, composition and reactions of minerals and mineral products. This does not mean that the approach is purely empirical; some theoretical understanding of the vibrational spectra of solids is essential to an assessment of the significance of the variations in the spectra that can be found within what is nominally a single mineral species, but which usually includes a range of compositions and defect structures. Theory alone, however, can give only limited support to the mineral spectroscopist, and careful studies of well-characterized families of natural and synthetic minerals have played an essential role in giving concrete structural significance to spectral features. The publication of this book represents a belief that theory and practice have now reached a state of maturitity and of mutual support which justifies a more widespread application of vibrational spectroscopy to the study of minerals and inorganic materials. The wide area of theory and practice that deserves to be covered has required a careful selection of the subject matter to be incorporated in this book. Since elementary vibrational spectroscopy is now regularly included in basic chemistry courses, and since so many books cover the theory and practice of molecular spectroscopy, it has been decided to assume the very basic level of knowledge which will be found, for example, in the elementary introduction of Cross and Jones (1969). With this assumption, it has been possible to concentrate on those aspects that are peculiar to or of particular significance for mineral spectroscopy.

2,720 citations